【Leetcode 377】组合总和 Ⅳ —— 动态规划

博客围绕LeetCode 377题组合总和Ⅳ展开,给出具体示例。指出这是经典动态规划问题,介绍解题思路,包括状态定义、状态转移方程,初始状态为空集,最终答案为dp[target],还提及动态规划适用的问题类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

377. 组合总和 Ⅳ

给你一个由 不同 整数组成的数组nums,和一个目标整数target。请你从nums中找出并返回总和为target的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例 1:

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

示例 2:

输入:nums = [9], target = 3
输出:0

题目分析

经典动态规划问题,更多案例可见 Leetcode 动态规划详解

我们可以使用动态规划解决本题,解题思路:

  1. 状态定义:
    • dp[i] 表示总和为i的元素组合的个数
  2. 状态转移方程:对于总和为i的组合,我们可以选择一个数num,然后在剩余的总和为i - num的情况下选择其他数,所以总的组合个数为dp[i - num]

d p [ i ] [ j ] = ∑ n u m = 0 i d p [ i − n u m ] dp[i][j]= \sum_{num=0}^{i} {dp[i−num]} dp[i][j]=num=0idp[inum]

  1. 初始状态dp[0] = 1即空集,最终答案为 dp[target]

动态规划一般用于求解具有重叠子问题和最优子结构的问题,例如最长公共子序列、背包问题、最短路径等。重叠子问题指的是在求解问题的过程中,多次用到相同的子问题,最优子结构指的是问题的最优解可以通过子问题的最优解来构造

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;

        for (int i = 1; i <= target; i++) {
            for (int num : nums) {
                if (i >= num) {
                    dp[i] += dp[i - num];
                }
            }
        }

        return dp[target];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值