题目链接 http://lightoj.com/volume_showproblem.php?problem=1190
题意:给出多边形顶点数n和各顶点坐标,接下来给出q个查询,判断每个查询中的点与多边形的位置关系。
思路:对于每个查询逐个判断。
效率:时间0s,空间1092.感觉不算太快,望路过的各位指教!
#include <stdio.h>
#include <math.h>
#define max(X,Y) ((X)>(Y) ? (X) : (Y))
#define min(X,Y) ((X)<(Y) ? (X) : (Y))
const int INF=0x7fffffff;
const double STD=1e-10;
struct Point
{
double x,y;
};
struct Segment
{
Point s,e;
};
int dblcmp (double d)
{
if (fabs(d) < STD)
return 0;
return d>0?1:-1;
}
double cross (Point a,Point b,Point c)
{
return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
int xyCmp (double p,double min,double max)
{
return dblcmp(p-min)*dblcmp(p-max);
}
int BetweenCmp (Point A,Point B,Point C)
{
if (fabs(B.x-C.x)>fabs(B.y-C.y))
return xyCmp(A.x,min(B.x,C.x),max(B.x,C.x));
else
return xyCmp(A.y,min(B.y,C.y),max(B.y,C.y));
}
int SegmentCross (Segment a,Segment b)
{
double x1,x2,x3,x4;
x1=cross(a.s,a.e,b.s);
x2=cross(a.s,a.e,b.e);
x3=cross(b.s,b.e,a.s);
x4=cross(b.s,b.e,a.e);
if (dblcmp(x1*x2)<0 && dblcmp(x3*x4)<0)
return 1;
else if (dblcmp(x1)==0 && BetweenCmp(b.s,a.s,a.e)<=0 ||
dblcmp(x2)==0 && BetweenCmp(b.e,a.s,a.e)<=0 ||
dblcmp(x3)==0 && BetweenCmp(a.s,b.s,b.e)<=0 ||
dblcmp(x4)==0 && BetweenCmp(a.e,b.s,b.e)<=0)
return 2;
return 0;
}
int PointOnSegment (Point P,Segment a)
{
if (dblcmp(cross(a.s,a.e,P)) == 0)
return BetweenCmp(P,a.s,a.e);
return 1;
}
int PointInPolygon (Point P,Point Pt[],int n) //点与多边形关系判断函数
// 1:外面;
// -1:里面:
// 0:边上或顶点上
{
int i,count;
Segment L,S;
Point Max,temp;
for(Max.x=INF,Max.y=P.y,L.s=P,L.e=Max,count=0,i=1;i<=n;i++)
{
if (i==n)
S.s=Pt[n-1],S.e=Pt[0];
else
S.s=Pt[i-1],S.e=Pt[i];
if (PointOnSegment (P,S)<=0)
return 0;
else if (S.s.y==S.e.y)
continue;
else
{
if (S.s.y>S.e.y)
temp=S.s;
else
temp=S.e;
if (PointOnSegment(temp,L) == -1)
count++;
else if (SegmentCross(L,S) == 1)
count++;
}
}
if (count%2 == 1)
return -1;
return 1;
}
int main ()
{
int T,n,q;
Point pt[105],P;
scanf("%d",&T);
for (int cas=1;cas<=T;cas++)
{
int i;
scanf("%d",&n);
for (i=0;i<n;i++)
scanf("%lf%lf",&pt[i].x,&pt[i].y);
scanf("%d",&q);
printf("Case %d:\n",cas);
for (i=0;i<q;i++)
{
scanf("%lf%lf",&P.x,&P.y);
int temp=PointInPolygon (P,pt,n);
if (temp == 1)
printf("No\n");
else
printf("Yes\n");
}
}
return 0;
}