LightOJ 1190 Sleepwalking

题目链接 http://lightoj.com/volume_showproblem.php?problem=1190

题意:给出多边形顶点数n和各顶点坐标,接下来给出q个查询,判断每个查询中的点与多边形的位置关系。

思路:对于每个查询逐个判断。

效率:时间0s,空间1092.感觉不算太快,望路过的各位指教!

#include <stdio.h>
#include <math.h>
#define max(X,Y) ((X)>(Y) ? (X) : (Y))
#define min(X,Y) ((X)<(Y) ? (X) : (Y))

const int INF=0x7fffffff;
const double STD=1e-10;

struct Point
{
	double x,y;
};

struct Segment
{
	Point s,e;
};

int dblcmp (double d)
{
	if (fabs(d) < STD)
		return 0;
	return d>0?1:-1;
}

double cross (Point a,Point b,Point c)
{
	return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}

int xyCmp (double p,double min,double max) 
{
	return dblcmp(p-min)*dblcmp(p-max);
}

int BetweenCmp (Point A,Point B,Point C)
{
	if (fabs(B.x-C.x)>fabs(B.y-C.y))
		return xyCmp(A.x,min(B.x,C.x),max(B.x,C.x));
	else
		return xyCmp(A.y,min(B.y,C.y),max(B.y,C.y));
}

int SegmentCross (Segment a,Segment b)
{
	double x1,x2,x3,x4;
	x1=cross(a.s,a.e,b.s);
	x2=cross(a.s,a.e,b.e);
	x3=cross(b.s,b.e,a.s);
	x4=cross(b.s,b.e,a.e);
	if (dblcmp(x1*x2)<0 && dblcmp(x3*x4)<0) 
		return 1;
	else if (dblcmp(x1)==0 && BetweenCmp(b.s,a.s,a.e)<=0 ||
		dblcmp(x2)==0 && BetweenCmp(b.e,a.s,a.e)<=0 ||
		dblcmp(x3)==0 && BetweenCmp(a.s,b.s,b.e)<=0 ||
		dblcmp(x4)==0 && BetweenCmp(a.e,b.s,b.e)<=0)
		return 2;
	return 0;
}

int PointOnSegment (Point P,Segment a) 
{
	if (dblcmp(cross(a.s,a.e,P)) == 0)
		return BetweenCmp(P,a.s,a.e);
	return 1;
}

int PointInPolygon (Point P,Point Pt[],int n)          //点与多边形关系判断函数
//      1:外面;
//     -1:里面:
//      0:边上或顶点上
{
	int i,count;
	Segment L,S;
	Point Max,temp;

	for(Max.x=INF,Max.y=P.y,L.s=P,L.e=Max,count=0,i=1;i<=n;i++)
	{
		if (i==n)
			S.s=Pt[n-1],S.e=Pt[0];
		else
			S.s=Pt[i-1],S.e=Pt[i];
		if (PointOnSegment (P,S)<=0)
			return 0;
		else if (S.s.y==S.e.y)
			continue;
		else
		{
			if (S.s.y>S.e.y)
				temp=S.s;
			else
				temp=S.e;
			if (PointOnSegment(temp,L) == -1)
				count++;
			else if (SegmentCross(L,S) == 1)
				count++;
		}
	}
	if (count%2 == 1)
		return -1;
	return 1;
}

int main ()
{
	int T,n,q;
	Point pt[105],P;
	scanf("%d",&T);
	for (int cas=1;cas<=T;cas++)
	{
		int i;
		scanf("%d",&n);
		for (i=0;i<n;i++)
			scanf("%lf%lf",&pt[i].x,&pt[i].y);
		scanf("%d",&q);
		printf("Case %d:\n",cas);
		for (i=0;i<q;i++)
		{
			scanf("%lf%lf",&P.x,&P.y);
			int temp=PointInPolygon (P,pt,n);
			if (temp == 1)
				printf("No\n");
			else
				printf("Yes\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值