轻松理解TF-IDF原理及应用

本文介绍了TF-IDF的概念,作为对计数特征文本向量化不足的改进。TF-IDF由词频(TF)和逆文档频率(IDF)组成,其中IDF通过计算词在所有文档中的频率来调整词的重要性,降低常见词的权重,提升稀有词的权重,以更好地反映文本的特征。TF-IDF用于文本分类和信息检索中,帮助筛选出更能代表文档主题的关键词。
摘要由CSDN通过智能技术生成

  在了解TF-IDF原理前,我们首先需要高清楚为啥需要它以及它能解决什么问题?下面我们先从以计数为特征的文本向量化来说起。


以计数特征文本向量化的不足

  计数特征,简单来讲就是统计每个特征词在文档中出现的次数,把次数作为特征的权重。因此在以计数特征文本分词并向量化后,我们可以得到词汇表中每个词在各个文本中形成的词向量,比如我们将下面4个短文本做了词频统计:
  corpus=[
      ”我 来到 风景 非常 美丽 的 杭州 喝 到了 非常 好喝 的 龙井”,
       “我 非常 喜欢 旅游”,
       “我 非常 喜欢 吃 苹果 “,
      ”我 非常 喜欢 看 电视”
          ]
    使用sklearn处理后得到的基于计数特征的词向量如下:
这里写图片描述
    如何我们直接将这以计数特征的12维特征作为每篇文档的特征向量,来进行文本分类,那么将会出现一个明显的问题。比如第一个文本,我们发现”杭州”,”龙井”和“风景”各出现1次,而“非常“出现了2次。单从计数特征来看似乎这个文本与”非常“这个特征更关系紧密。但是实际上”非常“是一个非常普遍的词,在4个短文本中都出现了,因此虽然它的词频为2,但是重要性却比词频为1的”“杭州”,”龙井”和“风景”要低的多,因为它在四个短文本区分度最低。但是,如果我们采用以计数为特征的向量化就无法反应这一点。因此我们需要进一步的预处理来反应文本的这个特征,而这个预处理就是TF-IDF。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI壹号堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值