前言:
学了差不多10多天的入门机器学习,突然发现学好数学是多么的重要,以前上学时还觉得数学只要学会加减乘除就可以了,什么导数,回归方程都没什么用,这段时间真后悔死,看了好多模型原理推导,有好多的数学符号都不认识了,全部还给了老师,改天还得回家找下以前初中高中的数学书看看才行。感觉我一文科生学这些东西真的非常吃力,说不定哪天我秃头了就真的变强了,哈哈哈!n年后秃头的自己看到今天写的这篇文章会是什么样的心情,忍不住想象了下。每次都废话连篇,放出代码如下:
import numpy as np
import pandas as pd
import tushare as ts
import matplotlib.pyplot as plt
from pylab import mpl
from datetime import datetime
import talib
from sklearn.ensemble import RandomForestClassifier #分类决策树模型
from sklearn.metrics import accuracy_score #预测准确度评分函数
import warnings
warnings.filterwarnings("ignore")
#pd.set_option()就是pycharm输出控制显示的设置
pd.set_option('expand_frame_repr', False)#True就是可以换行显示。设置成False的时候不允许换行
pd.set_option('display.max_columns', None)# 显示所有列
#pd.set_option('display.max_rows', None)# 显示所有行
pd.set_option('colheader_justify', 'centre')# 显示居中
pro = ts.pro_api('要到tushare官网注册个账户然后将token复制到这里,可以的话请帮个忙用文章末我分享的链接注册,谢谢')
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
#1.数据准备
df = pro.daily(ts_code='002505.SZ', start_date='20200101', end_date='20200818')
df.set_index('trade_date', inplace=True) #设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
df.index = pd.DatetimeIndex(df.index) #将object类型转化成 DateIndex 类型,pd.D