简介:
粗糙集是波兰理工大学Z.pawlak教授提出用来研究不完整数据,不精确知识的表达、学习,归纳等的一套理论,从数学的角度看,粗糙集是研究集合的;从编程的角度看,粗糙集的研究对象是矩阵,只不过是一些特殊的矩阵;从人工智能的角度来看,粗糙集研究的是决策表。
概念:
- 论域U:实际就是数学里面的集合。
- 知识:对对象分类的能力,这里的对象指任何实体,一般叫论域。为U的任何子集族。
- 属性R=知识R=等价关系R=分类:而属性是Table表里面的列,知识是人工智能里面的术语,等价关系是数学上的词汇,而分类则是数据挖掘里的概念。而实际上以上4者是同一个东西。
- 知识库:U上的分类族叫知识库。
- 知识等价:ind(P)=ind(Q),表示P与Q等价。
粗糙集是建立在分类机制的基础上,他将分类理解成为在特定空间上的等价关系,而等价关系构成料对该空间的划分。
粗糙集理论的主要思想是利用已知的知识库,将不精确或不确定的知识用已知的知识库中的知识来(近似)刻画。
该理论与其他处理不确定和不精确问题理论的最显著的区别是它无需提供问题所需处理的数据集合之外的任何先验信息,所以对问题的不确定性的描述或处理可以说比较客观。