【李宏毅机器学习】(一)机器学习介绍

一.机器学习介绍

1.机器学习介绍

以前的人工智慧完全是依靠人制定的规则行事,而机器学习相比增加自主学习即自己制定规则的能力。怎么做到呢?就是通过提供给他的资料,学习出来一个function。

2.机器学习想关的技术

a.监督学习

Regression:输出是scalar,是可以是连续中的一个数值。

Classification:输出的是类别,如二分类,多分类。

监督学习:提供给机器的function set 是有输入input 和输出 label 的,什么输入对应什么输出。

对于训练出来的model可能有线性模型和非线性模型,非线性模型如Deep leaning.

b.半监督学习

function set中既有labelled data,又有 unlabelled data

c.迁移学习

也是用来减少data用量,比如做猫狗分类问题时,一大堆不相干的图片(凉宫春日,御坂美琴)等图片可以带来什么帮助。

d.无监督学习

完全没有任何label的情况下,机器学习特征。

举例来说,如果我们给机器看大量的文章(在去网络上收集站文章很容易,网络上随便爬就可以)让机器看过大量的文章以后,它到底可以学到什么事情。

举另外一个无监督学习的例子:假设我们今天带机器去动物园让它看一大堆的动物,它能不能够在看了一大堆动物以后,它就学会自己创造一些动物。那这个都是真实例子。仔细看了大量的动物以后,它就可以自己的画一些狗出来。有眼睛长在身上的狗、还有乳牛狗等等。

e.监督学习中的结构化学习

在machine要解的任务上我们讲了Regression、classification,还有一类的问题是structured learning。

structured learning 中让机器输出的是要有结构性的,举例来说:在语音辨识里面,机器输入是声音讯号,输出是一个句子。句子是要很多词汇拼凑完成。它是一个有结构性的object。或者是说在机器翻译里面你说一句话,你输入中文希望机器翻成英文,它的输出也是有结构性的。或者你今天要做的是人脸辨识,来给机器看张图片,它会知道说最左边是长门,中间是凉宫春日,右边是宝玖瑠。然后机器要把这些东西标出来,这也是一个structure learning问题。

f.强化学习

reinforcement learning,不告诉机器正确的答案,只在机器预测完之后,告诉他做的好还是不好。

 

二.为什么我们需要学习机器学习?

像训练师训练宝可梦,合适的宝可梦对应合适的场景。我们需要对应场景来训练出合适的模型。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值