刚看到这道题的时候无从下手,不理解题意到底在考察什么,看了dalao的一片题解后才明白,原来是求解联通块的问题…(所谓联通块在这道题里面可以理解为数字相同的块) 所以本题的题意就相当于如果一个联通块其中有块在边界时,那么这个联通块一定不在闭合曲线里面了,而先找联通块再去判断这种方法比较麻烦,所以我们利用逆向思维,先找到边界上的块,再找到他的联通块,这样找到的整个联通块就一定不在闭合曲线里面了,注意这里找边界的时候一定要仔细地把4条边界上的块都找出来,因为不在闭合曲线里的联通块个数是不确定的
下面贴上按照dalao思路写的代码
#include <bits/stdc++.h>
#define max_int 50
//求边界联通块
using namespace std;
int mp[max_int][max_int];
int vis[max_int][max_int];
int n;
int bfs(int w,int e){
queue<int> q;
q.push(w);
q.push(e);
//找到的这个初始点一定是在圈外的
vis[w][e] = 1;
while(!q.empty()){
int x = q.front();
q.pop();
int y = q.front();
q.pop();
if(mp[x+1][y] == 0 && !vis[x+1][y] && x!=n) vis[x+1][y] = 1,q.push(x+1),q.push(y);
if(mp[x-1][y] == 0 && !vis[x-1][y] && x!=1) vis[x-1][y] = 1,q.push(x-1),q.push(y);
if(mp[x][y+1] == 0 && !vis[x][y+1] && y!=n) vis[x][y+1] = 1,q.push(x),q.push(y+1);
if(mp[x][y-1] == 0 && !vis[x][y-1] && y!=1) vis[x][y-1] = 1,q.push(x),q.push(y-1);
}
}
int main(int argc, char** argv) {
cin >> n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin >> mp[i][j];
if(mp[i][j] == 1) vis[i][j] = 1;
}
}
// 找边界(这个是上下两条)
for(int i = 1;i<=n;i=i+n-1){
for(int j=1;j<=n;j++){
if(vis[i][j]) continue;
bfs(i,j);
}
}
// 找边界 这个是左右两条
for(int i = 1;i<=n;i=i+n-1){
for(int j=1;j<=n;j++){
if(vis[j][i]) continue;
bfs(j,i);
}
}
// 全扫一遍
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(vis[i][j] == 1) cout << mp[i][j] << " ";
else cout << '2' << " ";
}
cout << endl;
}
return 0;
}