目录
4.博弈模型
本讲介绍博弈模型,包括博弈论(Game theory,又称对策论)中最基本的一些概念,以及非合作博弈论中的纳什平衡和帕雷托最优概念,同时介绍博弈论中的几个著名案例:囚徒困境、智猪博弈、脏脸之谜等。
博弈有5个基本要素:
-
局中人(选手)参与博弈的个人或团体。
-
策略(对策)可供局中人选择的行动方案。
-
赢利(获益)局中人的收益或支付。
-
信息 在策略选择中,信息是最关键的因素。
-
均衡 博弈的最终结果。
n人博弈模型的几个符号约定:
选手集:N={1, 2, …, n}
策略集:S1, S2, ..., Sn
决策集:D∈S=S1xS2x···x Sn
赢利函数:f1,f2, ..., fn D→R
例如:田忌赛马
S齐=S田={(上中下), {中下上}, {下上中}, {上下中}, {中上下}, {下中上}}
f齐{(上中下), (下上中)} = 0
f田{(上中下), (下上中)} = 1
下面讨论合作与不合作两种情形下的博弈。
如果选手k知道了其他选手的策略xi,(i=1,2,…,n,i≠k),自然希望取策略 xk∈Sk
4.1.Nash平衡点和帕雷托最优
定义选手k的合理反应集为
Rk={(x1,.., xn)∈D|(x1, ..., xn)使得(*)成立}
各选手都希望好、决策在各自的合理反应集中,所以称(x1, ..., xn)∈R1∩···∩Rn
为n人非合作对策的一个纳什平衡点。
对于Nash平衡点,在别人不改变对策的情况下,每个选手的对策都是最好的,故他们都不会轻易去改变自己的对策。所以,非合作博弈的解将在Nash平衡点处出现。
Nash定