数学建模博弈理论与实践国防科大版

本文探讨了博弈论的基本概念,如Nash平衡和帕雷托最优,通过囚徒困境、智猪博弈和脏脸之谜等实例展示非合作博弈的策略。同时,文章介绍了军事问题如何通过兰彻斯特作战模型进行数学建模,涉及一般战斗、游击战和混合战的不同场景。最后,文章以硫磺岛战役为例提出了思考题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

4.博弈模型

4.1.Nash平衡点和帕雷托最优

4.2.囚徒困境

4.3.智猪博弈

4.4.脏脸之谜

5.军事问题数学建模

5.1.兰彻斯特作战模型

5.1.1.一般战斗模型

5.1.2游击战模型

5.1.3.混合战模型

5.2.硫磺岛战役


4.博弈模型

本讲介绍博弈模型,包括博弈论(Game theory,又称对策论)中最基本的一些概念,以及非合作博弈论中的纳什平衡和帕雷托最优概念,同时介绍博弈论中的几个著名案例:囚徒困境、智猪博弈、脏脸之谜等。

1705677332424

博弈有5个基本要素:

  1. 局中人(选手)参与博弈的个人或团体。

  2. 策略(对策)可供局中人选择的行动方案。

  3. 赢利(获益)局中人的收益或支付。

  4. 信息 在策略选择中,信息是最关键的因素。

  5. 均衡 博弈的最终结果。

n人博弈模型的几个符号约定:

选手集:N={1, 2, …, n}

策略集:S1, S2, ..., Sn

决策集:D∈S=S1xS2x···x Sn

赢利函数:f1,f2, ..., fn D→R

例如:田忌赛马

S齐=S田={(上中下), {中下上}, {下上中}, {上下中}, {中上下}, {下中上}}

f齐{(上中下), (下上中)} = 0

f田{(上中下), (下上中)} = 1

下面讨论合作与不合作两种情形下的博弈

如果选手k知道了其他选手的策略xi,(i=1,2,…,n,i≠k),自然希望取策略 xk∈Sk

4.1.Nash平衡点和帕雷托最优

定义选手k的合理反应集为

Rk={(x1,.., xn)∈D|(x1, ..., xn)使得(*)成立}

各选手都希望好、决策在各自的合理反应集中,所以称(x1, ..., xn)∈R1∩···∩Rn

为n人非合作对策的一个纳什平衡点。

对于Nash平衡点,在别人不改变对策的情况下,每个选手的对策都是最好的,故他们都不会轻易去改变自己的对策。所以,非合作博弈的解将在Nash平衡点处出现。

Nash定

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Williamtym

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值