377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
方法1: DFS(TLE)
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
if (nums.size() == 0 || target == 0 ) return 0;
set<vector<int>> result;
vector<int> current;
helper(nums, target, result, current);
return result.size();
}
void helper(vector<int> & nums, int target, set<vector<int>> & result, vector<int> & current){
if (target == 0) {
result.insert(current);
return;
}
if (target < 0) {
return;
}
for (int i = 0; i < nums.size(); i++){
current.push_back(nums[i]);
helper(nums, target - nums[i], result, current);
current.pop_back();
}
return;
}
};
方法2: DFS + memoize
https://www.youtube.com/watch?v=niZlmOtG4jM&t=627s
** Line 53: Char 26: runtime error: signed integer overflow: 1748130326 + 2082876103 cannot be represented in type ‘int’ (solution.cpp) **
class Solution1 {
public:
int combinationSum4(vector<int>& nums, int target) {
if (nums.size() == 0 || target == 0 ) return 0;
vector<int> dp(target + 1, -1);
dp[0] = 1;
return helperDP(nums, target, dp);
}
private:
int helperDP(vector<int> & nums, int target, vector<int> & dp){
if (target < 0) return 0;
if (dp[target] != -1) return dp[target];
//if (target == 0) return 1;
int ans = 0;
for (int coin: nums){
ans += helperDP(nums, target - coin, dp);
}
return dp[target] = ans;
}
};
方法3: DP
http://www.cnblogs.com/grandyang/p/5705750.html
这道题是组合之和系列的第四道,我开始想当然的一位还是用递归来解,结果写出来发现TLE了,的确OJ给了一个test case为[4,1,2] 32,这个结果是39882198,用递归需要好几秒的运算时间,实在是不高效,估计这也是为啥只让返回一个总和,而不是返回所有情况,不然机子就爆了。而这道题的真正解法应该是用DP来做,解题思想有点像之前爬梯子的那道题Climbing Stairs,我们需要一个一维数组dp,其中dp[i]表示目标数为i的解的个数,然后我们从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于[1,2,3] 4,这个例子,当我们在计算dp[3]的时候,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,此时x为dp[1],3同样可以拆为3+x,此时x为dp[0],我们把所有的情况加起来就是组成3的所有情况了。
易错点: initialize dp[0] = 1, 相当与把所有coin == target initialize to 1
所有dp方法都会报如下错误
** Line 53: Char 26: runtime error: signed integer overflow: 1748130326 + 2082876103 cannot be represented in type ‘int’ (solution.cpp) **
**DP: ** vector<int> dp(target + 1, 0)
how many ways using nums to create target using current num_i
**Initialization: ** dp[0] = 1 (??) (no straightforward explanation except equivalent to make all res == nums[i] == 1)
**Transfer equation: **
if (res >= nums[i] )
dp[res] += dp[res - nums[i]]
class Solution1 {
public:
// DP
int combinationSum4(vector<int>& nums, int target) {
if (nums.size() == 0 || target == 0 ) return 0;
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int v = 1; v < target + 1; v++){
for (int i = 0; i < nums.size(); i ++){
if (v >= nums[i])
// dp[v] += (v >= nums[i] ? dp[v - nums[i]] : 0);
//cout << " v ";
dp[v] += dp[ v- nums[i]];
}
}
return dp[target];
}
};