622. Design Circular Queue
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k): Constructor, set the size of the queue to be k.
Front: Get the front item from the queue. If the queue is empty, return -1.
Rear: Get the last item from the queue. If the queue is empty, return -1.
enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
isEmpty(): Checks whether the circular queue is empty or not.
isFull(): Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note:
- All values will be in the range of [0, 1000].
- The number of operations will be in the range of [1, 1000].
- Please do not use the built-in Queue library.
方法1:
思路:
head:第一个元素的index
tail:下一个元素将放入的index
class MyCircularQueue {
private:
vector<int> nums_;
int head_, tail_;
int k_;
int size_;
public:
/** Initialize your data structure here. Set the size of the queue to be k. */
MyCircularQueue(int k) {
nums_.resize(k, 0);
k_ = k;
head_ = 0;
tail_ = 0;
size_ = 0;
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
bool enQueue(int value) {
if (isFull()) return false;
nums_[tail_] = value;
tail_ = (tail_ + 1) % k_;
size_++;
return true;
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
bool deQueue() {
if (isEmpty()) return false;
head_ = (head_ + 1) % k_;
size_--;
return true;
}
/** Get the front item from the queue. */
int Front() {
if (isEmpty()) return -1;
return nums_[head_];
}
/** Get the last item from the queue. */
int Rear() {
if (isEmpty()) return -1;
return nums_[(tail_ - 1 + k_) % k_];
}
/** Checks whether the circular queue is empty or not. */
bool isEmpty() {
return size_ == 0;
}
/** Checks whether the circular queue is full or not. */
bool isFull() {
return size_ == k_;
}
};
/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue* obj = new MyCircularQueue(k);
* bool param_1 = obj->enQueue(value);
* bool param_2 = obj->deQueue();
* int param_3 = obj->Front();
* int param_4 = obj->Rear();
* bool param_5 = obj->isEmpty();
* bool param_6 = obj->isFull();
*/