1008. Construct Binary Search Tree from Preorder Traversal


Return the root node of a binary search tree that matches the given preorder traversal.

(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)

Example 1:

Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]
在这里插入图片描述

Note:

  1. 1 <= preorder.length <= 100
  2. The values of preorder are distinct.

方法1: recursion

思路:

递归建立子节点。每次在left == right 时建立一个新节点,否则在建立新节点后要向右方开始搜索,找到第一个大于当前节点的值,一定为root->right,而再右侧是右子树。因此可以递归对中间的范围调用递归,构建左子树, 剩下的范围构建右子树。

Complexity

Time complexity: O(n^2)
Space complexity: O(n)

易错点:

  1. 向右遍历查找要防止出界。
class Solution {
public:
    TreeNode* bstFromPreorder(vector<int>& preorder) {
        return bstHelper(preorder, 0, preorder.size() - 1);
    }
    
    TreeNode* bstHelper(vector<int> & preorder, int left, int right) {
        if (left > right || left < 0 || right >= preorder.size()) return nullptr;
        if (left == right) return new TreeNode(preorder[left]);
        
        TreeNode* root = new TreeNode(preorder[left]);
        int i = left + 1;
        while (i < preorder.size() && preorder[i] < preorder[left]) i++;
        root -> left = bstHelper(preorder, left + 1, i - 1);
        root -> right = bstHelper(preorder, i, right);
        return root;
    }
};

方法2: recursion, O(n)

思路:

根据修改上下界来判断下一个位置的数字是否能被放在当前数字的左子树或右子树,或者不能被放在本层。由于每个数字只遍历一次,复杂度是O(n)。

Complexity

Time complexity: O(n)
Space complexity: O(n)

class Solution {
private:
    int idx = 0;
public:
    TreeNode* bstFromPreorder(vector<int>& preorder) {
        return bstHelper(preorder, INT_MIN, INT_MAX);
    }
    
    TreeNode* bstHelper(vector<int> & preorder, int lower, int upper) {
        if (idx == preorder.size()) return nullptr;
        int val = preorder[idx];
        if (val < lower || val > upper) return nullptr;
        idx++;
        TreeNode* root = new TreeNode(val);
        root -> left = bstHelper(preorder, lower, val);
        root -> right = bstHelper(preorder, val, upper);
        return root;
    }
};

方法3:iterative

discussion: https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/discuss/252719/C%2B%2B-iterative-O(n)-solution-using-decreasing-stack

class Solution {
public:
    TreeNode* bstFromPreorder(vector<int>& preorder) {
        TreeNode dummy_root(INT_MAX);
        stack<TreeNode *> s;
        s.push(&dummy_root);
        for (int x : preorder) {
            auto n = new TreeNode(x);
            TreeNode *p = nullptr;
            while (s.top()->val < x) {
                p = s.top();
                s.pop();
            }
            if (p) {
                p->right = n;
            } else {
                s.top()->left = n;
            }
            s.push(n);
        }
        return dummy_root.left;
    }
};
To convert the given array to a complete BST, we need to perform the following steps: 1. Sort the array in ascending order 2. Construct a complete binary tree using the sorted array 3. Perform inorder traversal of the binary tree and store the elements in the original array in the same order as the traversal Here's the implementation of the to_bst(lst) function in Python: ```python def to_bst(lst): # Sort the input list lst.sort() # Construct a complete binary tree using the sorted list n = len(lst) if n == 0: return lst root = lst[n // 2] left_subtree = to_bst(lst[:n // 2]) right_subtree = to_bst(lst[n // 2 + 1:]) binary_tree = [root] + left_subtree + right_subtree # Perform inorder traversal of the binary tree and store the elements in the original array inorder_traversal(binary_tree, lst, 0) return lst def inorder_traversal(binary_tree, lst, i): # Perform inorder traversal of the binary tree and store the elements in the original array n = len(binary_tree) if i >= n: return inorder_traversal(binary_tree, lst, 2 * i + 1) lst[i] = binary_tree[i] inorder_traversal(binary_tree, lst, 2 * i + 2) ``` The to_bst(lst) function takes in the input list and returns the same list after converting it to a complete BST. The function first sorts the input list in ascending order. It then constructs a complete binary tree using the sorted list by recursively dividing the list into two halves and setting the middle element as the root of the binary tree. Finally, the function performs an inorder traversal of the binary tree and stores the elements in the original list in the same order as the traversal.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值