一步到位!dify + Python+飞书多维表格实现火车票/发票信息自动录入

虽然前面实现了识别火车票和发票的信息,但是,输出的是text。使用还需要复制到表格中,可以更简单吗?

当然是可以,这篇文章教你:

​ 识别火车票,直接把信息录入:表格。一步到位。

最终效果:

话不多说,开始实战吧

一、飞书开发者注册

1.1 进入开发者平台,注册登陆:

地址: https://open.feishu.cn/app?lang=zh-CN

1.2 点击创建自建应用:

1.3: 创建完成后,展示如下:

1.4: 进入应用内:

1.5: 获取appid和App Secret:

1.6 开通权限:

按照图中:1-> 2->3 -> 4->5 .开通权限。

1.7 版本发布

1.7.1 点击创建版本:

1.7.2 填写版本信息:

1.7.4 发布:

1.8 进入飞书文档,创建多维表格:

这里很重要。一定要变更 存储位置。

选择创建空白的即可。修改名称,我这里是: 用于和dify关联

1.9 实现自建应用与飞书多维表格的联通。

1.9.1 进入创建的多维表格;

点击右上角… 。 选择更多,添加文档应用。按照下图:1,2,3 操作即可。

在搜索框中输入: 1.2 中创建的应用名称。搜索展示出来应用。然后点击应用。

1.9.2 权限配置: 可编辑。然后点击 添加。

添加完成后,就实现了刚才的应用与飞书多维表格的联通。

二、多维表格结合Dify

使用之前创建的票据识别工作流:
DeepSeek+dify 工作流保姆级教程:票据识别专家智能体

进入工作流的地址:

2.1 新增节点 【代码执行】:

在【 变量聚合器】 后面。

为的是把聚合后的数据处理一下,因为多维表格需要的是 json 数组。 我们的工作流输出的是: json 字符串。

配置节点信息:

处理数据的代码:

import json def main(json_str):    
target_list = [] # 解析为字典或列表    
target_list.append(json_str) # 解析为字典或列表    parsed_list = [json.loads(item) for item in target_list]    
strt =json.dumps(parsed_list, ensure_ascii=False)   
return {'result': strt}

2.2 新增节点【新增多条记录】,在代码执行节点之后:

2.3 配置节点多维表格的信息:

这个插件需要几个关键参数:

  • app_token:就是多维表格链接 url。
  • table_id 或者 table_name:想要使用的数据表的 id。
  • 记录列表:要记录进表格中的内容,是一个列表结构。

依次去如下位置获得以上参数:

app_token

进入 1 中创建的多维表格。

图中:1 必须是base 的。后面2 就是 app_token, 3 就是 table_id

table_id 或者 table_name

上图中的3.

记录列表

通俗的讲,就是输入的内容格式 key-value , key 要和多维表格中的列明一致。

比如:火车票这个识别工作流

[{  \"起始站\": \"兰州西\",  \"终点站\": \"北京西\",  \"车次\": \"G672\",  \"乘车日期\": \"20190722日\",  \"出发时间\": \"07:56\",  \"票面价格\": \"二等座\",  \"身份证号\": \"\",  \"姓名\": \"\"}]

多维表格就要设计为:列名要和 json 数组中对象的属性对应。

配置好后,如下:

三、执行:

输入的信息如下

执行结果每一步都提示成功;

查看多维表格的数据:

表格中的数据和输入的信息一致。

完美结束。

### 如何在 Python 中使用 DeepSeek 和 Dify 进行集成或开发 为了实现在企业内部私有化部署并利用 DeepSeek 结合 Dify 构建智能化的知识库解决方案,开发者可以通过 Python 编写接口程序来完成这一目标。下面介绍具体的实现方法。 #### 使用 DeepSeek 的 REST API 接口 DeepSeek 提供了 RESTful 风格的 Web Service 接口用于外部系统的接入[^1]。通过 HTTP 请求的方式可以直接向其发送查询请求获取响应数据。对于 Python 开发者来说,`requests` 库是一个非常方便的选择来进行这样的操作: ```python import requests def query_deepseek(query_string, api_url='http://localhost:8000/api/v1/search'): response = requests.post(api_url, json={'query': query_string}) if response.status_code == 200: return response.json() else: raise Exception(f"Error {response.status_code}: {response.text}") ``` 这段代码定义了一个名为 `query_deepseek()` 函数,它接受两个参数:一个是待查询字符串;另一个则是可选的目标API地址,默认指向本地运行的服务实例。该函数会返回来自 DeepSeek 查询的结果作为 JSON 对象处理后的字典形式的数据结构。 #### 整合 Dify 实现知识管理功能 Dify 是一款开源的企业级文档管理和协作平台,在此场景下可用于存储由 DeepSeek 返回的信息条目,并支持团队成员之间的交流互动以及版本控制等功能[^2]。要让两者协同工作,则需借助于 Dify SDK 或者直接调用其提供的开放接口上传文件、创建项目空间等动作。这里给出一段简单的例子展示怎样把从 DeepSeek 得到的内容保存至指定目录下的 Markdown 文件中去: ```python from pathlib import Path def save_to_dify(result_dict, output_dir='./output', filename_prefix='search_result_'): path = Path(output_dir) path.mkdir(parents=True, exist_ok=True) file_path = (path / f"{filename_prefix}{result_dict['id']}.md").resolve() with open(file_path, 'w') as md_file: md_file.write("# Search Result\n") for item in result_dict.get('items', []): title = item.get('title') content = item.get('content') md_file.write(f"\n## [{title}]\n{content}\n") print(f"Saved to {file_path}") # 假设我们已经得到了一个有效的查询结果 sample_query_response = {"id": "abc123", "items":[{"title":"Example Title","content":"This is an example."}]} save_to_dify(sample_query_response) ``` 上述脚本实现了将给定的结果集转换成易于阅读的人类友好型文本格式——Markdown 文档的功能,并将其存放在预先设定好的位置上以便后续查阅。 #### 利用 Coze 调用 DeepSeek 大模型 除了基本的搜索外,还可以考虑采用更高级别的自然语言处理技术增强应用程序的能力。例如,可以尝试引入像 Coze 这样的框架来简化与大型预训练模型(如 DeepSeek R1)交互的过程[^3]。这不仅能够提高效率而且有助于保持代码整洁易懂: ```python from coze.client import Client client = Client(model_name="deepseek-volcengine-r1-full") # 初始化客户端对象 prompt_text = "Tell me about the history of artificial intelligence." generated_content = client.generate(prompt=prompt_text).strip() # 获取生成的回答 print(generated_content) ``` 以上展示了如何初始化一个针对特定版本的大规模语言模型的客户机实例,并通过提供提示词获得相应的输出内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值