1.算法思想
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?
可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
2.图解
以数组 int[] a = {4,2,3,1}为列,首先看看mergesort方法吧,执行过程如下图,基本就是无限细分,然后组合进行排序。
两数组合并操作(mergearray方法执行过程)
//将有二个有序数列a[first...mid]和a[mid...last]合并。
void mergearray(int a[], int first, int mid, int last, int temp[])
{
int i = first, m = mid; //左边(i为first,m为last)
int j = mid + 1, n = last; //右边(j为first,n为last)
int k = 0;
//比较左边和右边,小的放入空数组,随后下标后移
while (i <= m && j <= n)
{
if (a[i] <= a[j])
temp[k++] = a[i++];
else
temp[k++] = a[j++];
}
//当其中一个数组全部被填充到新数组,且另外一个数组还有数据没有填充完
//那么直接将剩余数据依次直接追加到新数组末尾
while (i <= m)
temp[k++] = a[i++];
while (j <= n)
temp[k++] = a[j++];
//将新数组的数据覆盖旧数组的数据,达到重排的效果,同时也有节约内存的作用
for (i = 0; i < k; i++)
a[first + i] = temp[i];
}
void mergesort(int a[], int first, int last, int temp[])
{
if (first < last)
{
int mid = (first + last) / 2;
mergesort(a, first, mid, temp); //左边有序
mergesort(a, mid + 1, last, temp); //右边有序
mergearray(a, first, mid, last, temp); //再将二个有序数列合并
}
}
bool MergeSort(int[] a, int n)
{
int[] p = new int[n];
if (p == NULL)
return false;
mergesort(a, 0, n - 1, p);
delete[] p;
return true;
}
转载:https://blog.csdn.net/middlekingt/article/details/8446552