二路归并排序
原始二路归并排序
思想:
先将原始数组划分为n个较小的子数组,然后对每个子数组两两进行排序并合并为一个次子数组
重复上述过程直到次子数组的个数为1即为排序后的原始数组
时间复杂度:O(N*logN) (最好/坏情况)
空间复杂度: O(N)
原地二路归并排序
为了解决原始二路归并排序空间复杂度较高的情况而产生的,思想很巧妙,很是佩服。它在将原始的空间复杂度由 O(N) 变为 O(1),时间复杂度没有变。
原理
见博客:http://blog.163.com/zhaohai_1988/blog/static/2095100852012721113044469/
Java代码:
package 算法视频.排序;
public class 归并排序_要求空间复杂度为O_1 {
public static void main(String[] args) {
int[] a = { 6, 8, 5, 7, 9, 3, 2 };
f1(a, 0, a.length - 1);
printResult(a);
}
private static void f1(int[] a, int left, int right) {
if (left >= right) {
return;
}
int middle = (left + right) >> 1; // 以中间点为分割点分割数组
f1(a, left, middle); // 将left到middle分割
f1(a, middle + 1, right); // 将middle+1到right分割
meger(a, left, middle, right); // 将分割后的数组合并
}
// 原地移动
private static void meger(int[] a, int left, int middle, int right) {
int i = left;
int j = middle + 1;
int index = j;
while (i <= middle && j <= right) {
// 先找到第一个数组中比第二个数组第一个数大的第一个值
while (i <= middle && a[i] < a[j]) {
i++;
}
// 然后再找到第二个数组中比a[i]大的第一个值
while (j <= right && a[i] > a[j]) {
j++;
}
// 此时a[left...i-1]均小于a[middle+1...j-1],交换位置并将i前移j-1-middle-1位即可,然后重复
swap(a, i, index-1);
swap(a, index, j - 1);
swap(a, i, j - 1);
i += j - index;
index = j;
}
}
private static void swap(int[] a, int i, int j) {
if (i > j || i < 0 || j < 0) {
return;
}
while (i <= j) {
int tem = a[i];
a[i] = a[j];
a[j] = tem;
i++;
j--;
}
}
private static void printResult(int[] a) {
if (a == null) {
return;
}
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
System.out.println();
}
}
测试结果:
2 3 5 6 7 8 9