自组织映射和特征提取、处理

        自组织映射是芬兰Helsink大学的Kohonen教授提出的,他认为,一个神经网络接受外界输入模式时候,将会分为不同的对应区域,各区域对输入模式具有不同的响应特征。对于某个频率信号,特定的神经元具有最大的响应,位置临近的神经元具有相近的频率特征。训练开始,网络中哪个位置的神经元兴奋是随机的,但是,自组织训练会在竞争层形成神经元的有序排列,功能相近的神经元非常靠近。

        自组织映射学习算法的步骤:

        (1)网络初始化。

        (2)输入向量的输入。

        (3)计算映射层的权值向量和输入向量的距离。

        (4)定义优胜邻域Sj(t)

        (5)权值的学习。

        (6)计算输出o

        (7)如达到要求则结束,否则返回2,继续。

        ****

        最近看到一篇关于范数的文章http://blog.csdn.net/antkillerfarm/article/details/53579368

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值