自组织映射是芬兰Helsink大学的Kohonen教授提出的,他认为,一个神经网络接受外界输入模式时候,将会分为不同的对应区域,各区域对输入模式具有不同的响应特征。对于某个频率信号,特定的神经元具有最大的响应,位置临近的神经元具有相近的频率特征。训练开始,网络中哪个位置的神经元兴奋是随机的,但是,自组织训练会在竞争层形成神经元的有序排列,功能相近的神经元非常靠近。
自组织映射学习算法的步骤:
(1)网络初始化。
(2)输入向量的输入。
(3)计算映射层的权值向量和输入向量的距离。
(4)定义优胜邻域Sj(t)
(5)权值的学习。
(6)计算输出o
(7)如达到要求则结束,否则返回2,继续。
****
最近看到一篇关于范数的文章http://blog.csdn.net/antkillerfarm/article/details/53579368