假设有两种微生物 X 和 Y
X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。
一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。
现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。
如果X=10,Y=90 呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!
解题思路:
由于新出生的X 半分钟就要吃掉Y ,所以我们要设最小时间间隔为半分钟。
我们用x[1]~x[6] 存储 过了 i * 0.5 分钟后的X个数。
比如,初始有X1 个 X,那么 x[1]就代表过了0.5分钟后的X个数,此时应该还为X1,但此时为新出生的X吃Y的时间,(还有一个点看下面)故Y的个数需要减X[1],每过0.5分钟,我们需要将上前0.5分钟的X移至下个时间段。由 x[1]~x[6]不断更迭即可。
听完了上段这里就好理解了,x[5]为过了2.5分钟的X,再过一分钟也需要吃掉一轮Y,我们知道新出生的X只有与x[5](x[6]==x[5])等值的X,这时x[5]过了一分钟刚好延续到x[1],与新出生的X一同吃掉Y,故X[1]直接赋值为2倍的x[6]。
由此,我们可以得出,x[1]中为0.5分钟,新出生的X吃Y,x[3] x[5] 是刚出生的X吃掉Y后,每一分钟吃一个Y,然后 x[6]是3分钟时的X数量,此时应该增殖。
由于时间间隔为半分钟,那么两个小时共120个半分钟。
代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5;
int main()
{
long long x[7],xn,y,nx;
memset(x,0,sizeof(x));
cin>>xn>>y;
x[1]=xn;
for(int i=1;i<=120;i++)//每半分钟进行一次判断
{
y=y-x[1]-x[3]-x[5];//X吃掉Y
if(y<=0)//Y被吃没了
{
y=0;
break;
}
nx=2*x[6];//X进行增殖
for(int j=6;j>1;j--)//状态转移
{
x[j]=x[j-1];
}
x[1]=nx;//新的一轮 X
if(i%4==0) y*=2; //Y增殖
}
cout<<y;
return 0;
}