目标检测数据集格式介绍(voc和coco)
1.voc数据格式
VOC数据格式的目标检测数据,是指每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。
Pascal VOC比赛对目标检测任务,对目标物体是否遮挡、是否被截断、是否是难检测物体进行了标注。对于用户自定义数据可根据实际情况对这些字段进行标注。
xml文件中包含以下字段:
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
- filename,表示图像名称。
<filename>road650.png</filename>
- size,表示图像尺寸。包括:图像宽度、图像高度、图像深度
<size>
<width>300</width>
<height>400</height>
<depth>3</depth>
</size>
- object字段,表示每个物体。包括:
name: 目标物体类别名称;
pose: 关于目标物体姿态描述(非必须字段);
truncated: 目标物体目标因为各种原因被截断(非必须字段);
occluded: 目标物体是否被遮挡(非必须字段);
difficult: 目标物体是否是很难识别(非必须字段);
bndbox: 物体位置坐标,用左上角坐标和右下角坐标表示: xmin、ymin、xmax、ymax
包括字段 | 含义 | 是否必需 |
---|---|---|
name | 目标物体类别名称 | 必需字段 |
pose | 关于目标物体姿态描述 | 非必需字段 |
truncated | 目标物体目标因为各种原因被截断 | 非必需字段 |
occluded | 目标物体是否被遮挡 | 非必需字段 |
difficult | 目标物体是否是很难识别 | 非必需字段 |
bndbox | 物体位置坐标,用左上角坐标和右下角坐标表示: xmin、ymin、xmax、ymax | 必需字段 |
1.coco数据格式
coco数据格式,是指将所有训练图像的标注都存放到一个json文件中。数据以字典嵌套的形式存放。
json文件中存放5个信息:
json文件中存放了
info licenses images annotations categories
的信息:
info中存放标注文件标注时间、版本等信息。
licenses中存放数据许可信息。
images中存放一个list,存放所有图像的图像名,下载地址,图像宽度,图像高度,图像在数据集中的id等信息。
annotations中存放一个list,存放所有图像的所有物体区域的标注信息,每个目标物体标注以下信息:
{
'area': 899,
'iscrowd': 0,
'image_id': 839,
'bbox': [114, 126, 31, 29],
'category_id': 0, 'id': 1,
'ignore': 0,
'segmentation': []
}