Python异步编程核武器:asyncio.gather() 的终极使用手册

Python异步编程核武器:asyncio.gather() 的终极使用手册


引言:从“顺序执行”到“并发风暴”

想象这样的场景:你的爬虫需要抓取100个网页,按传统方式顺序执行需要100秒,但使用asyncio.gather()只需1秒——这就是异步编程的魔力。作为Python异步编程中最强大的并发执行工具之一,asyncio.gather()能让你用简洁的代码实现惊人的性能提升。本文将深入解析它的工作机制,并通过5个实战场景教你彻底驾驭这把“并发利刃”。


一、asyncio.gather() 核心机制解析

1.1 基础语法与执行流程
import asyncio

async def task(n)
`asyncio.gather` 和 `asyncio.wait` 都是 Pythonasyncio 库中的两个用于并发执行多个异步任务的方法,但它们之间有显著的不同。 1. **asyncio.gather()**: - 这个函数用于一次性调度并等待多个协程(coroutines)的完成。它接受一组协程作为参数,返回一个 Future 对象,当所有协程都完成时,Future 将解析为包含每个协程结果的一个元组。如果任何一个协程抛出了异常,那么整个 `gather` 也会立即停止,返回的 Future 将包含第一个失败协程的错误信息。 - 示例: ```python import asyncio async def task1(): await asyncio.sleep(1) return "Task1 result" async def task2(): await asyncio.sleep(2) return "Task2 result" tasks = [task1(), task2()] results = await asyncio.gather(*tasks) print(results) # {"Task1 result", "Task2 result"} ``` 2. **asyncio.wait()**: - `wait` 函数则更底层,它接收一个可迭代的协程集合和一个超时时间。它会返回两个列表:一个是已完成的任务,另一个是还在运行或挂起的任务。这意味着你需要手动处理这些返回值,可能需要使用 `asyncio.all_tasks()` 或者 `asyncio.shield()` 来确保所有任务都被正确地收集和处理。 - 示例: ```python import asyncio async def task1(): await asyncio.sleep(1) return "Task1 result" async def task2(): await asyncio.sleep(2) return "Task2 result" tasks = [task1(), task2()] done, pending = await asyncio.wait(tasks) completed_results = [t.result() for t in done] print(completed_results) ``` 注意,如果你不提供超时时间,`wait` 只会在所有任务完成后才会结束。 总结来说,`asyncio.gather()` 是一个简洁的方式,适合于不需要太多控制流程、只需要等待所有任务完成的情况;而 `asyncio.wait()` 提供了更多的灵活性,但需要手动管理任务的状态。如果你不确定具体需求,`gather` 更加推荐,因为它更易于理解和使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清水白石008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值