深入实践ARIMA模型预测:基于MATLAB的代码详解与应用实例
引言
自回归积分滑动平均模型(Autoregressive Integrated Moving Average,ARIMA)是时间序列分析中的重要工具,广泛应用于经济、金融、气象、生态等多个领域。MATLAB作为一款强大的数值计算和数据分析软件,提供了丰富的统计和机器学习工具箱,为ARIMA模型的实现与应用提供了便捷的平台。本文将详细讲解ARIMA模型的基本原理,通过MATLAB代码实现ARIMA模型的构建、训练、预测,并结合实例演示其在实际问题中的应用。
一、ARIMA模型基础
-
自回归(AR):模型中的当前值依赖于过去若干期的值,表示为p阶自回归模型AR§。
-
差分(I):对原序列进行差分处理,消除非平稳性,使之变为平稳序列。
-
滑动平均(MA):模型中的当前值受过去q个误差项的加权和影响,表示为q阶滑动平均模型MA(q)。
-
ARIMA(p,d,q):综合上述要素,ARIMA模型形式为ARIMA(p,d,q),其中p为自回归阶数,d为差分次数,q为滑动平均阶数。
二、ARIMA模型在MATLAB中的实现
- 数据预处理:导入时间序列数据,进行必要的清洗、缺失值处理及归一化等操作。
data = readtable('your_data.csv'); % 读取CSV数据
tsData = table2timetable(data, 'RowTimes', data.Time); % 转换为时间表
tsData = fillmissing(