机器学习
钟鸣_
这个作者很懒,什么都没留下…
展开
-
AlphaZero五子棋网络模型【python】
前文: AlphaGo Zero详解蒙特卡洛树搜索(MCTS)代码详解【python】代码来自 https://zhuanlan.zhihu.com/p/32089487五子棋版的AlphaZero网络一开始是公共的3层全卷积网络,分别使用32、64和128个 3\times3 的filter,使用ReLu激活函数。然后再分成policy和value两个输出。在policy这一端,先使...原创 2019-03-27 20:57:45 · 8625 阅读 · 2 评论 -
蒙特卡洛树搜索(MCTS)代码详解【python】
前文:AlphaGo Zero 详解之前看了AlphaGo Zero 的整个流程,接下来就要了解一下具体怎么实现的。毕设选择做用 AlphaGoZero 做五子棋,也在网上找到了相当不错的前人写的 代码。我要做的是先看懂他写的,然后再试试改进算法的性能。首先要实现 MCTS 的部分,原版注释用英语写的。现在我要一步一步的分析。首先创建节点类 TreeNode:class TreeNode(...原创 2019-03-23 23:37:09 · 26230 阅读 · 5 评论 -
AlphaGo Zero详解
AlphaGo Zero思考再三,决定研究一下 AlphaGo Zero,并把 AlphaGo Zero 的思想运用到五子棋 中,毕设就决定做这个。AlphaGo Zero 最大的亮点是:完全没有利用人类知识,就能够获得比之前版本更强大的棋力。主要的做法是:利用蒙特卡洛树搜索建立一个模型提升器在自我对弈过程中,利用提升器指导模型提升,模型提升又进一步提高了提升器的能力。蒙特卡洛树...原创 2019-03-20 23:21:27 · 26019 阅读 · 1 评论 -
mujoco win7下载安装
mujoco在win7环境下的下载和安装一 安装Microsoft Visual C++ 14.0下载地址: https://964279924.ctfile.com/fs/1445568-239446865这个在安装 scrapy 时候遇到过,很烦人.二 安装mjpro150 win64,下载地址:https://www.roboti.us/index.html把解压好的文件...原创 2019-03-21 13:32:28 · 4431 阅读 · 7 评论 -
毕设日志(二)
毕业设计工作日志(二)2019.3.9DQN2019.3.9今天的任务是了解Deep Q Network,以及Double DQN,Dueling DQN,Deep Deterministic Policy Gradient,A3C,Proximal Policy Optimization (PPO)等等强化学习算法。用Tensorflow实现一个简单的Deep Q Network。开...原创 2019-03-09 21:41:09 · 5462 阅读 · 0 评论 -
毕设日志(一)
毕业设计工作日志一2019.3.5现在开始准备做本科毕业设计,将每天的安排和进度记录下来,督促自己。首先,毕设的大致方向是深度强化学习。具体内容未知。Q1:我现在的任务是什么?A1:(1)掌握相关的知识,如深度强化学习,图像处理等等,(2)学习相关的论文并复现。Q2:我现在具体在做什么?A2:了解强化学习,并用python实现一些小例子。Q-learning算法别人的代码:来自...原创 2019-03-05 21:04:55 · 8165 阅读 · 1 评论 -
数据分析(四)从K近邻算法入门
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。举例来说,我们要根据三角形更像什么(跟哪种图形离得更近),预测三角形的类别。我们找到三个离它最近的邻居:两个菱形和一个圆。菱形的数量多于圆,因此我们原创 2017-11-16 22:17:10 · 697 阅读 · 0 评论 -
数据分析(三)
这篇将前面的内容写成.py文件,对各个机器学习算法的正确率进行评估,然后选择具有较高正确率的算法生成模型。 这篇只是作者对sklearn库学习过后的简单的应用,之后会更深入的去学习。第一个代码主要是将数据进行整理,变成前文说的形式。titanic1.pyimport pandas as pdimport numpy as npimport redef get_title(name):原创 2017-11-08 23:13:41 · 531 阅读 · 0 评论 -
数据分析(二)
数据清洗做完特征分析后,先来看一下train表变成什么样子,再看看还需要做些什么train.head(10)Cabin因为缺失值太多,暂且不考虑这一个特征。Ticket没看出有多大作用,也忽略掉。Age有一些缺失值,需要补上。还有一些特征已经提取过信息了,像SibSp, Parch已经归纳出IsAlone,就可以删除了。等等还有一些操作,得一步一步来。首先先填补年龄, 前面说过年龄和称呼应该有很大原创 2017-10-21 20:18:48 · 281 阅读 · 0 评论 -
数据分析(一)
以Kaggle上的一道经典题Titanic为例,总结一下数据分析的一些方法。题目说明RMS泰坦尼克号的沉没是历史上最著名的沉船事件之一。 1912年4月15日,泰坦尼亚号在首次航行中与冰山相撞后沉没,在2224名乘客和船员中有1502人死亡。 虽然在幸存的人有一些运气成分在,但确实有些人比其他人有更大的生存机会,如妇女,儿童和上层阶级。 在这个挑战中,我们要求你完成对可能活下来的人进行分析,应原创 2017-10-20 22:33:17 · 631 阅读 · 0 评论