很好的一篇综述型文章,作者Anil K. Jain等
目录结构
1 介绍
1.1 何为模式识别
1.2 模板匹配
1.3 统计方法
1.4 语义方法
1.5 神经网络
2 统计模式识别
数字识别的可用特征集(30*48的图像):1)76个字符形状的Fourier系数 2)216个轮廓关系 3)64个KL系数 4)240个2*3窗口象素平均值 5)47 Zernike moment 6)6 morphological 特征。
HANDWRITTEN DIGIT RECOGNITION BY COMBINED CLASSIFIER
3 维数曲线以及peaking phenomena
4 维缩减
4.1 特征抽取
4.2 特征选择
5 分类器介绍
6 分类器合并
6.1 选择和训练单个分类器
分类器之间越不相关越好
6.2 合并
6.3 合并的理论分析
6.4 一个例子
nearest mean method
7 误差评估
特定训练数据测试数据集上的误差是个随机数
8 无监督分类器
记住:1)每个聚类算法都将在数据集上找到聚类,不管原来有没有聚类 2)没有一个最优的聚类问题。实验不同的聚类算法,数据收集,表示,规则化聚类验证和聚类算法选择同等重要。
8.1 平方误差聚类
Mahalanobis 距离 -〉hyper-ellipsoidal shaped clusters
8.2 混合分解
8.2.1 基本定义
8.2.2 EM算法
8.2.3 组件个数估算
9 讨论
9.1 模式识别研究的前线
9.2 重要的结论
读后感:
1.三种分类器:基于相似性的,基于概率的,基于分类边界的
2.选取的特征不是越多越好(当训练数据一定时)