Statistical Pattern Recognition-A Review (1999)读后感

很好的一篇综述型文章,作者Anil K. Jain等

目录结构

1 介绍

1.1 何为模式识别

1.2 模板匹配

1.3 统计方法

1.4 语义方法

1.5 神经网络

2 统计模式识别

数字识别的可用特征集(30*48的图像):1)76个字符形状的Fourier系数 2)216个轮廓关系 3)64个KL系数 4)240个2*3窗口象素平均值 5)47 Zernike moment 6)6 morphological 特征。

HANDWRITTEN DIGIT RECOGNITION BY COMBINED CLASSIFIER

3 维数曲线以及peaking phenomena

4 维缩减

4.1 特征抽取

4.2 特征选择

5 分类器介绍

6 分类器合并

6.1 选择和训练单个分类器

分类器之间越不相关越好

6.2 合并

6.3 合并的理论分析

6.4 一个例子

nearest mean method 

7 误差评估

特定训练数据测试数据集上的误差是个随机数

8 无监督分类器

记住:1)每个聚类算法都将在数据集上找到聚类,不管原来有没有聚类 2)没有一个最优的聚类问题。实验不同的聚类算法,数据收集,表示,规则化聚类验证和聚类算法选择同等重要。

8.1 平方误差聚类

Mahalanobis 距离 -〉hyper-ellipsoidal shaped clusters

8.2 混合分解

8.2.1 基本定义

8.2.2 EM算法

8.2.3 组件个数估算

9 讨论

9.1 模式识别研究的前线

9.2 重要的结论

 

读后感:

1.三种分类器:基于相似性的,基于概率的,基于分类边界的

2.选取的特征不是越多越好(当训练数据一定时)

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值