443. 压缩字符串
2021.8.21 每日一题,今天休息了一天…
题目描述
给你一个字符数组 chars ,请使用下述算法压缩:
从一个空字符串 s 开始。对于 chars 中的每组 连续重复字符 :
如果这一组长度为 1 ,则将字符追加到 s 中。
否则,需要向 s 追加字符,后跟这一组的长度。
压缩后得到的字符串 s 不应该直接返回 ,需要转储到字符数组 chars 中。需要注意的是,如果组长度为 10 或 10 以上,则在 chars 数组中会被拆分为多个字符。
请在 修改完输入数组后 ,返回该数组的新长度。
你必须设计并实现一个只使用常量额外空间的算法来解决此问题。
示例 1:
输入:chars = [“a”,“a”,“b”,“b”,“c”,“c”,“c”]
输出:返回 6 ,输入数组的前 6 个字符应该是:[“a”,“2”,“b”,“2”,“c”,“3”]
解释:
“aa” 被 “a2” 替代。“bb” 被 “b2” 替代。“ccc” 被 “c3” 替代。
示例 2:
输入:chars = [“a”]
输出:返回 1 ,输入数组的前 1 个字符应该是:[“a”]
解释:
没有任何字符串被替代。
示例 3:
输入:chars = [“a”,“b”,“b”,“b”,“b”,“b”,“b”,“b”,“b”,“b”,“b”,“b”,“b”]
输出:返回 4 ,输入数组的前 4 个字符应该是:[“a”,“b”,“1”,“2”]。
解释:
由于字符 “a” 不重复,所以不会被压缩。“bbbbbbbbbbbb” 被 “b12” 替代。
注意每个数字在数组中都有它自己的位置。
提示:
1 <= chars.length <= 2000
chars[i] 可以是小写英文字母、大写英文字母、数字或符号
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/string-compression
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
简单模拟
class Solution {
public int compress(char[] chars) {
//看看十分钟能不能写完
int l = chars.length;
char c = chars[0];
int count = 1;
int idx = 0;
for(int i = 1; i < l; i++){
if(chars[i] != c){
chars[idx++] = c;
if(count != 1){
String s = String.valueOf(count);
for(int j = 0; j < s.length(); j++){
chars[idx++] = s.charAt(j);
}
}
c = chars[i];
count = 1;
}else{
count++;
}
}
chars[idx++] = c;
if(count != 1){
String s = String.valueOf(count);
for(int j = 0; j < s.length(); j++){
chars[idx++] = s.charAt(j);
}
}
return idx;
}
}
怎样减少最后那个重复代码:
class Solution {
public int compress(char[] cs) {
int n = cs.length;
int i = 0, j = 0;
while (i < n) {
int idx = i;
while (idx < n && cs[idx] == cs[i]) idx++;
int cnt = idx - i;
cs[j++] = cs[i];
if (cnt > 1) {
int start = j, end = start;
while (cnt != 0) {
cs[end++] = (char)((cnt % 10) + '0');
cnt /= 10;
}
reverse(cs, start, end - 1);
j = end;
}
i = idx;
}
return j;
}
void reverse(char[] cs, int start, int end) {
while (start < end) {
char t = cs[start];
cs[start] = cs[end];
cs[end] = t;
start++; end--;
}
}
}
作者:AC_OIer
链接:https://leetcode-cn.com/problems/string-compression/solution/gong-shui-san-xie-shuang-zhi-zhen-yuan-d-bppu/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
653. 两数之和 IV - 输入 BST
题目描述
给定一个二叉搜索树 root 和一个目标结果 k,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true。
示例 1:
输入: root = [5,3,6,2,4,null,7], k = 9
输出: true
示例 2:
输入: root = [5,3,6,2,4,null,7], k = 28
输出: false
示例 3:
输入: root = [2,1,3], k = 4
输出: true
示例 4:
输入: root = [2,1,3], k = 1
输出: false
示例 5:
输入: root = [2,1,3], k = 3
输出: true
提示:
二叉树的节点个数的范围是 [1, 10^4].
-10^4 <= Node.val <= 10^4
root 为二叉搜索树
-10^5 <= k <= 10^5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/two-sum-iv-input-is-a-bst
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
两数之和用在树上
class Solution {
Set<Integer> set = new HashSet<>();
public boolean findTarget(TreeNode root, int k) {
//随便一个遍历方法
if(root == null)
return false;
if(set.contains(k - root.val))
return true;
set.add(root.val);
boolean left = findTarget(root.left, k);
if(left)
return true;
boolean right = findTarget(root.right, k);
return right;
}
}
235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-search-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
直接写了个这个代码:
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//剑指offer的题,再做一遍也不亏
//dfs,返回值来表示当前子树是否找到了p或者q,如果找到了一个,就直接是p或者q的值
//如果找到了两个,就是当前值;如果没有找到,就是0
if(root == null)
return null;
if(root == p)
return p;
if(root == q)
return q;
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if(left != null && right != null)
return root;
return left != null ? left : right;
}
}
写完以后,发现是二叉搜索树
如果是二叉搜索树的话,公共祖先应该就是两个给定节点的中间值
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//二叉搜索树的话,只需要找两个值中间的值或者相等的值就是祖先
if(root == null)
return null;
int l = 0;
int r = 0;
if(p.val > q.val){
l = q.val;
r = p.val;
}else{
l = p.val;
r = q.val;
}
return find(root, l, r);
}
public TreeNode find(TreeNode root, int l, int r){
if(root == null)
return null;
if(root.val >= l && root.val <= r)
return root;
TreeNode left = find(root.left, l, r);
TreeNode right = find(root.right, l, r);
return left == null ? right : left;
}
}
官解的迭代,我刚刚没想到利用性质大小性质去找,失策
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
TreeNode ancestor = root;
while (true) {
if (p.val < ancestor.val && q.val < ancestor.val) {
ancestor = ancestor.left;
} else if (p.val > ancestor.val && q.val > ancestor.val) {
ancestor = ancestor.right;
} else {
break;
}
}
return ancestor;
}
}