畅通工程续

33 篇文章 0 订阅
4 篇文章 0 订阅

Time Limit : 3000/1000ms (Java/Other)
Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 43
Accepted Submission(s) : 30

Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

Input
本题目包含多组数据,请处理到文件结束。 每组数据第一行包含两个正整数N和M(0

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

Sample Output
2
-1

这题会有同起点同终点但不同距离的数据,,我说怎么一直WA。。。读题时没想过这种问题 ,以后注意,细心细心细心。。。

dijkstra

#include<stdio.h>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int d[220],cost[220][220],used[220];
int n,m,x,y;
void dijkstra(int s)
{
    for(int i=0;i<n;i++)
    {
        d[i]=INF;
        used[i]=false;
    }
    d[x]=0;
    while(true)
    {
        int v=-1;
        for(int u=0;u<n;u++)
            if(!used[u]&&(v==-1||d[u]<d[v]))
                v=u;
        if(v==-1)  break;
        used[v]=true;
        for(int u=0;u<n;u++)
            d[u]=min(d[u],d[v]+cost[v][u]);
    }
}
int  main()
{
    int a,b,c,i,j;
    while(~scanf("%d%d",&n,&m))
    {
        for(i=0;i<n;i++)
            for(j=0;j<n;j++)
                cost[i][j]=INF;
        for(i=0;i<m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            if(c<cost[a][b])//一开始一直没想到竟然有这样的陷阱,一直WA  看了别人的解题报告之后才知道。。。
                cost[a][b]=cost[b][a]=c;
        }
        scanf("%d%d",&x,&y);
        dijkstra(x);
        if(d[y]==INF)
            printf("-1\n");
        else
            printf("%d\n",d[y]);
    }
    return 0;
}

spfa

#include<cstdio>
#include<cstring>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
struct stu
{
    int to,next,w;
}a[2000];
int head[220],vis[220],dis[220];
int n,m,s,t;
void spfa(int x)
{
    queue<int>q;
    q.push(x);
    vis[x]=1;    
    dis[x]=0;
    while(!q.empty())
    {
        int u=q.front();
        vis[u]=0;
        q.pop();
        for(int i=head[u];i!=-1;i=a[i].next )
        {
            int v=a[i].to;
            if(dis[v]>dis[u]+a[i].w )
            {
                dis[v]=dis[u]+a[i].w;
                if(!vis[v])
                {
                    vis[v]=1;
                    q.push(v);
                }
            }            
        }        
    }
}

int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        int x,y,c,i=0;
        memset(dis,INF,sizeof(dis));
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));        
        while(m--)
        {
            scanf("%d%d%d",&x,&y,&c);
            a[i].to =y;
            a[i].next =head[x];
            a[i].w =c;
            head[x]=i++;
            a[i].to =x;
            a[i].next=head[y];
            a[i].w=c;
            head[y]=i++;
        }
        scanf("%d%d",&s,&t);
        spfa(s);
        if(dis[t]>=INF)
            printf("-1\n");
        else
            printf("%d\n",dis[t]);        
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值