直线分割平面问题(数学归纳法)

原博客地址: https://blog.csdn.net/lanchunhui/article/details/51723248

试问平面上 nn 条彼此相交而无三者共点的直线能够把平面分割成多少部分?

我们先从简单的事实出发,设平面分为 SnSn 部分,

  • n=1n=1Sn=2Sn=2
  • n=2n=2Sn=4Sn=4
  • n=3n=3Sn=7Sn=7
  • n=4n=4Sn=11Sn=11
  • n=5n=5Sn=15Sn=15

由观察发现:

S1=1+1S2=1+1+2S3=1+1+2+3S1=1+1S2=1+1+2S3=1+1+2+3

以此类推,便可猜想得到: 

Sn=1+1+2++n=1+n(n+1)2Sn=1+1+2+⋯+n=1+n(n+1)2

或者: 

Sn=Sn1+n=S1+2+3++n=2+2+3++n=1+1+2++n=1+n(n+1)2Sn=Sn−1+n=S1+2+3+⋯+n=2+2+3+⋯+n=1+1+2+⋯+n=1+n(n+1)2

下面我们使用数学归纳法的思想进行证明,其实是证明在 Sn=1+n(n+1)2Sn=1+n(n+1)2 成立的前提下,Sn+1Sn+1 是否也符合这一等式,也即 Sn+1=1+(n+1)(n+2)2Sn+1=1+(n+1)(n+2)2

这里,我们需要明白一个基本结论,如果当前有 n 条直线,新增加一条直线(第 n+1 条直线),可以多出来 n 个交点(新的直线和之前所有的直线都有交点),而多出来 n 个交点对应到可以多出 n+1 个平面(比如从两条线,又新增一条线时,新的线和两条线都相交,作用在三个区域上,对这三个区域切分,增加三个平面)。

也即:

Sn+1=Sn+(n+1)=1+(n+1)(n+2)2Sn+1=Sn+(n+1)=1+(n+1)(n+2)2

如此建立的是一种递归证明

1. 举一反三

同样我们还可以这样问,每次切分不被改变的区域有多少个?

以下三元组中的每一个元素,分别表示,线段的个数,分割的区域数,以及未受到本次切分影响的区域

  • 1、2、0
  • 2、4、0
  • 3、7、4-3
  • 4、11、7-4

未受到影响的区域为:

Sn1n=1+n(n1)2n=(n1)(n2)2Sn−1−n=1+n(n−1)2−n=(n−1)(n−2)2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值