HDU - 2604 Queuing (递推 + 矩阵快速幂)

本文介绍了一种使用四阶矩阵快速幂的方法来高效解决特定递推数列问题。通过构建四阶右乘矩阵并利用快速幂算法,能够显著减少计算复杂度,适用于求解形如 f(n) = f(n-1) + f(n-3) + f(n-4) 的递推公式。
摘要由CSDN通过智能技术生成

思路:

可以找到递推公式f(n)= f(n-1)+f(n-3)+f(n-4)
所以可以构造一个四阶的右乘矩阵来实现递推。
详细方法可以参考类似题型:http://blog.csdn.net/wing_wuchen/article/details/74276372

#include <cstdio>
#include <iostream>
#include <string.h>
#include <queue>
#include <algorithm>
typedef long long int lli;
using namespace std;
int mod;
const int n = 4;
struct mat{
    lli ma[n][n];
};
mat operator * (mat &a,mat &b){
    mat c;
    memset(c.ma,0,sizeof(c.ma));
    for(int k=0;k<n;++k){
        for(int i=0;i<n;++i){
            for(int j=0;j<n;++j){
                c.ma[i][j] += a.ma[i][k]*(b.ma[k][j] % mod) % mod;
            }
        }
    }
    return c;
}
mat qp(mat a,lli k){
    mat c;
    for(int i=0;i<n;++i){
        for(int j=0;j<n;++j){
            c.ma[i][j] = (i==j);
        }
    }
    for(;k;k>>=1){
        if(k&1) c=c*a;
        a = a*a;
    }
    return c;
}


int main(){
    int l;
    while(~scanf("%d%d",&l,&mod)){
        mat a = {1,1,0,0,   0,0,1,0,  1,0,0,1,  1,0,0,0};
        mat b = {9,6,4,2,  0,0,0,0,  0,0,0,0, 0,0,0,0};
        if(l <= 4){
            if(l == 0){
                printf("0\n");
                continue;
            }
            printf("%d\n",b.ma[0][4-l]%mod);
            continue;
        }
        else{
            a = qp(a,l-4);
            b = b * a;
            printf("%d\n",b.ma[0][0]%mod);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值