BZOJ 2005 能量采集(莫比乌斯反演+分块)

思路:

跟bzoj 2190那题差不多。
在对gcd(i,j)==k的贡献做统计是分别对于每个k做统计就ok了,分块这种东西不是顺手就加上了吗。。

#include<stdio.h>
#include <iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#define eps 1e-8
typedef long long int lli;
using namespace std;

const int maxn = 1e5+10;
bool isprime[maxn];
int prime[maxn];
char miu[maxn];
void moblus(){
    int cnt = 0;miu[1] = 1;
    for(lli i = 2;i < maxn;i++){
        if(!isprime[i]){
            prime[cnt++] = i,miu[i] = -1;//phi[i] = i-1;
        }
        for(lli j = 0;j < cnt && i*prime[j] < maxn;j++){
            lli x = prime[j];
            isprime[i*x] = 1;
            if(i%x){
                miu[i*x] = -miu[i];
                //phi[i*x] = phi[i] * phi[x];
            }
            else{
                miu[i*x] = 0;
                //phi[i*x] = phi[i] * x;
                break;
            }
        }
    }
}
int ff[maxn],sum[maxn];
int main(){
    lli p,q;
    moblus();
    for(int i = 1;i <= maxn;i++){
        sum[i] = sum[i-1] + miu[i];
    }
    lli a,b;
    scanf("%lld%lld",&a,&b);
    if(a>b) swap(a,b);
    lli ans = 0,l,tempans = 0;
    for(int i = 1;i <= a;i++){
        lli n = a/i,m = b/i;
        for(int j=1;j<=n;j=l+1){//分块加速
            l= min(n/(n/j),m/(m/j));
            tempans += (lli)(sum[l]-sum[j-1])*(n/j)*(m/j);
        }
        ans += (lli)((i-1)*2+1)*tempans;tempans = 0;
    }
    printf("%lld\n",ans);
    return 0;
}
发布了203 篇原创文章 · 获赞 69 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览