FZU 2020 组合(组合数 lucas定理模板题)

思路:

m,n很大的组合数,用lucas定理求解。
其中小的 c(x,y) 用乘法逆元暴力求解。因为p是素数,而且我们在用lucas定理时每次的x,y都必然小于p,所以也就必然与p互质,所以满足费马小定理。

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<map>
#define inf 0x3f3f3f3f
typedef long long int lli;
using namespace std;
int mod = 1000000007;

inline lli qp(lli a,lli x){
    lli ans = 1;a%=mod;
    for(;x;x>>=1){
        if(x&1) ans = ans*a%mod;
        a = a*a%mod;
    }
    return ans;
}
lli c(lli n,lli m){
    if(n<m)swap(n,m);
    lli ans = 1;
    for(int i=1;i<=m;i++){//用逆元递推的求c(n,m) mod是素数 且a与mod 互质 a^(p-1) = 1 
        lli a = (n+i-m)%mod;
        lli b = i%mod;
        ans = ans*(a*qp(b,mod-2)%mod)%mod;
    }
    return ans;
}

lli lucas(lli n,lli m){
    if(m==0) return 1;
    return c(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}

int main(){
    lli t,n,m;
    cin>>t;
    while(t--){
        cin>>n>>m>>mod;
        if(n<m) swap(n, m);
        cout <<(lucas(n,m)+mod)%mod<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值