思路:
m,n很大的组合数,用lucas定理求解。
其中小的
c(x,y)
用乘法逆元暴力求解。因为p是素数,而且我们在用lucas定理时每次的x,y都必然小于p,所以也就必然与p互质,所以满足费马小定理。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<map>
#define inf 0x3f3f3f3f
typedef long long int lli;
using namespace std;
int mod = 1000000007;
inline lli qp(lli a,lli x){
lli ans = 1;a%=mod;
for(;x;x>>=1){
if(x&1) ans = ans*a%mod;
a = a*a%mod;
}
return ans;
}
lli c(lli n,lli m){
if(n<m)swap(n,m);
lli ans = 1;
for(int i=1;i<=m;i++){//用逆元递推的求c(n,m) mod是素数 且a与mod 互质 a^(p-1) = 1
lli a = (n+i-m)%mod;
lli b = i%mod;
ans = ans*(a*qp(b,mod-2)%mod)%mod;
}
return ans;
}
lli lucas(lli n,lli m){
if(m==0) return 1;
return c(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}
int main(){
lli t,n,m;
cin>>t;
while(t--){
cin>>n>>m>>mod;
if(n<m) swap(n, m);
cout <<(lucas(n,m)+mod)%mod<<endl;
}
return 0;
}