思路:
首先定义dp数组,dp[i]代表长度为i的字符串最多的种类数。
对于已经存在的长度为l的字符串,我们从下一个字符k,即dp[k+1]开始转移状态。
对于这个状态我们可以试着由 dp[k]和dp[k+1]转移过来(如果limit满足条件的话,然而从题目可知,长度为1的一定会满足条件),也可以试着由dp[k-1]和字符串(k,k+1)转移过来(如果满足limit)。
当然limit是随着每个向前的字符会更新的越来越小的。
所以当不满足的时候,break。
对于第二问,问你最长的一个是多长,那么在从i向前走的过程中记录一下i-j+1的长度就好。
对于第三问,问你最少分成几个串,那么我们额外开一个数组ans3,初始化ans3[0] = 1
然后在每次更新种类数的时候,ans3[i] = min(ans[i],ans[j-1]+1);
#include <string.h>
#include <iostream>
#include <cstdio>
#include <queue>
#include<algorithm>
#include <map>
using namespace std;
typedef long long int lli;
#define inf 0x3f3f3f3f
const int mod = 1e9+7;
char s[1200];
int cnt[30];
lli dp[1100];//统计种类数
int ans3[1100];//统计长度
int main(){
int len,ans2 = 1,lim = 2000000;
memset(ans3,0x3f,sizeof(ans3));
scanf("%d",&len);
scanf("%s",s);
for(int i = 1;i <= 26;i++){
scanf("%d",&cnt[i]);
}
dp[0] = 1;ans3[0] = 1;
for(int i = 1;i < len;i++){
lim = cnt[ s[i]-'a'+1 ];
for(int j = i;j > i-cnt[ s[i]-'a'+1 ];j--){
if(j < 0) break;
lim = min(lim,cnt[s[j]-'a'+1]);
if(i-j+1 <= lim){
if(j != 0)
dp[i] = (dp[i]+dp[j-1]) % mod;
else// 跑到最左边了。情况加1
dp[i] = (dp[i]+1) % mod;
ans2 = max(ans2,i-j+1);
ans3[i] = min(ans3[i],ans3[j-1]+1);
}
else{
break;
}
}
}
printf("%lld\n%d\n%d\n",dp[len-1],ans2,ans3[len-1]);
}