hadoop中的map-reduce是处理<key,value>这样的键值对,故指定<key,value>的分割符等参数可以分成三类:
map输出时分割符
分桶时的分隔符
reduce输出时的分割符
下面分别叙述:
1. map输出时分割符
参数:
stream.map.output.field.separator
作用:
指定map输出时的分割符
stream.num.map.output.key.fields
指定输出按照分隔符切割后,key所占有的列数
举例:
input数据:
2,2,c,c,c,c
参数配置:
-mapper "cat" # map 为分布式的cat命令
-reducer "" #reduce为空 /
-jobconf stream.map.output.field.separator=',' /
-jobconf stream.num.map.output.key.fields=2 /
即按照','逗号分隔后,去前2列作为key
output数据:
2,2 c,c,c,c #其中key为2,2 value为c,c,c,c
2. 分桶时的分隔符
map.output.key.field.separator
指定map输出<key,value>对之后,其中key内部的分割符
num.key.fields.for.partition
指定分桶时,按照分隔符切割后,用于分桶key所占的列数
举例:
map的output数据:
2,2 c,c,c,c
参数配置:
-jobconf map.output.key.field.separator=',' /
-jobconf num.key.fields.for.partition='1' /
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner /
output数据:
这样用于partition分桶的key就为:2
注意,这里分桶不应该用默认的HashPartitioner
3. reduce输出时的分割符
这个与map类似,分别用于reduce输出时分隔符以及key占有的列数
stream.reduce.output.field.separator
stream.num.reduce.output.key.fields
map输出时分割符
分桶时的分隔符
reduce输出时的分割符
下面分别叙述:
1. map输出时分割符
参数:
stream.map.output.field.separator
作用:
指定map输出时的分割符
stream.num.map.output.key.fields
指定输出按照分隔符切割后,key所占有的列数
举例:
input数据:
2,2,c,c,c,c
参数配置:
-mapper "cat" # map 为分布式的cat命令
-reducer "" #reduce为空 /
-jobconf stream.map.output.field.separator=',' /
-jobconf stream.num.map.output.key.fields=2 /
即按照','逗号分隔后,去前2列作为key
output数据:
2,2 c,c,c,c #其中key为2,2 value为c,c,c,c
2. 分桶时的分隔符
map.output.key.field.separator
指定map输出<key,value>对之后,其中key内部的分割符
num.key.fields.for.partition
指定分桶时,按照分隔符切割后,用于分桶key所占的列数
举例:
map的output数据:
2,2 c,c,c,c
参数配置:
-jobconf map.output.key.field.separator=',' /
-jobconf num.key.fields.for.partition='1' /
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner /
output数据:
这样用于partition分桶的key就为:2
注意,这里分桶不应该用默认的HashPartitioner
3. reduce输出时的分割符
这个与map类似,分别用于reduce输出时分隔符以及key占有的列数
stream.reduce.output.field.separator
stream.num.reduce.output.key.fields