PCA原理分析

在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。

一:PCA基本思想及数学模型

(一)主成分分析的基本思想

主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望越大,表示包含的信息越多。因此在所有的线性组合中所选取的应该是方差最大的,故称为第一主成分。如果第一主成分不足以代表原来个变量的信息,再考虑选取即第二个线性组合,为了有效地反映原来信息,已有的信息就不需要再出现在中,用数学语言表达就是要求,称为第二主成分,依此类推可以构造出第三、四……第个主成分。

(二)主成分分析的数学模型

PCA的数学定义是:一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推[4]

对于一个样本资料,观测个变量,个样品的数据资料阵为:





新坐标有如下性质:

(1)个点的坐标和的相关几乎为零。

(2)二维平面上的个点的方差大部分都归结为轴上,而轴上的方差较小。

和称为原始变量和的综合变量。由于个点在轴上的方差最大,因而将二维空间的点用在轴上的一维综合变量来代替,所损失的信息量最小,由此称轴为第一主成分,轴与轴正交,有较小的方差,称它为第二主成分。



贡献率越大,说明该主成分所包含的原始变量的信息越强。主成分个数的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。

另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的。

第五步:计算主成分得分。

根据标准化的原始数据,按照各个样品,分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下。


第六步:依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成份回归,变量子集合的选择,综合评价等。

四、主成分分析的应用

主成分概念首先是由Karl parson 在1901年引进,但当时只对非随机变量来讨论的。1933年Hotelling将这个概念推广到随机变量。特别是近年来,随着计算机软件的应用,使得主成分分析的应用也越来越广泛。

其中,主成分分析可以用于系统评估。系统评估是指对系统营运状态做出评估,而评估一个系统的营运状态往往需要综合考察许多营运变量,例如对某一类企业的经济效益作评估,影响经济效益的变量很多,很难直接比较其优劣,所以解决评估问题的焦点是希望客观、科学地将一个多变量问题综合成一个单变量形式,也就是说只有在一维空间中才能使排序评估成为可能,这正符合主成分分析的基本思想。在经济统计研究中,除了经济效益的综合评价研究外,对不同地区经济发展水平的评价研究,不同地区经济发展竞争力的评价研究,人民生活水平、生活质量的评价研究,等等都可以用主成分分析方法进行研究。

另外,主成分分析除了用于系统评估研究领域外,还可以与回归分析结合,进行主成分回归分析,以及利用主成分分析进行挑选变量,选择变量子集合的研究。

Reference:

http://zh.wikipedia.org/wiki/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90#.E8.AE.A1.E7.AE.97.E5.B9.B3.E5.9D.87.E5.81.8F.E5.B7.AE

http://wenku.baidu.com/view/902af4fbf705cc17552709fa.html

http://baike.baidu.com/link?url=eluSbFo9N3qhu0z7J6hMqv9ozDmWe597OR9Abk30uJll6jgOi5i0datgxqZ0Z9JL

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维和模式识别方法。其原理可分为以下几个步骤: 1. 数据标准化:对原始数据进行标准化处理,使得数据的均值为0,方差为1,以消除不同特征之间尺度差异的影响。 2. 协方差矩阵计算:通过计算标准化后的数据的协方差矩阵,来衡量不同特征之间的相关性。协方差矩阵是一个对称矩阵,其对角线上的元素代表每个特征的方差,非对角线上的元素代表特征之间的协方差。 3. 特征值和特征向量计算:对协方差矩阵进行特征值分解,求出特征值和特征向量。特征值表示了协方差矩阵中的信息量大小,特征向量表示了协方差矩阵中的主要特征。 4. 主成分选择:按特征值的大小排序,选择前k个特征向量作为主成分。这些主成分是原始数据中最重要的方向,可以用来描述原始数据的大部分变异。 5. 数据转换:将原始数据投影到选取的主成分上,得到新的低维表示。这样可以实现数据的降维,同时保留原始数据中的大部分信息。转换后的数据可以用于后续的模式识别、聚类等任务。 PCA主成分分析的优点是能够通过线性变换找到数据中最重要的特征,实现数据降维同时保留大部分信息。它是一种无监督的方法,不需要依赖标签信息。然而,PCA也有一些限制,比如对数据的线性可分性有要求,对异常值比较敏感等。因此,在使用PCA时需要根据具体问题和数据的特点来选择合适的方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值