本次竞赛的知识点主要分为两个板块
板块一:分析基础与函数研究
- 函数极限连续:这是整个高等数学的基础概念,为后续的学习提供了理论支撑。极限的概念用于定义导数和积分,连续性则保证了函数在一定区间内的良好性质。
- 微分学:以函数为研究对象,通过导数和微分等工具,分析函数的变化率、单调性、极值等性质。微分学在优化问题、物理问题等方面有广泛应用。
- 积分学:与微分学相对应,积分学是求函数的原函数以及计算定积分和不定积分。积分可以用来计算图形的面积、体积等,在物理学、工程学等领域也有重要作用。
板块二:方程与拓展应用
- 微分方程:研究含有未知函数及其导数的方程,通过求解微分方程可以得到描述各种动态系统的函数表达式。在物理、生物、工程等领域中,微分方程用于模拟和预测实际现象。
- 无穷级数:无穷级数是对函数进行逼近和展开的重要工具。通过将函数表示为无穷级数,可以进行近似计算、求解微分方程等。无穷级数在数学分析和工程计算中具有重要地位。
- 向量代数与空间解析几何:引入向量的概念,研究空间中的几何图形和向量之间的关系。向量代数为解决三维空间中的问题提供了有力的工具,与物理、工程等领域的实际问题紧密相关。同时,空间解析几何可以帮助我们直观地理解空间中的曲线、曲面等几何对象。
1. 函数极限连续
1.1. 函数
1. 函数的概念、函数的表示法、简单应用问题的函数关系的建立。
2. 函数的性质:有界性、单调性、周期性、奇偶性。
3. 复合函数的性质及其图形;反函数
的性质及其图形;分段函数的性质及其图形;隐函数
的性质及其图形;基本初等函数(通常包括幂函数、指数函数、对数函数、三角函数、反三角函数)的性质及其图形;初等函数(由基本初等函数经过有限次的四则运算和复合运算所得到的函数)。
1.2. 极限
1. 数列极限的定义与性质
2. 函数极限(极限、左极限、右极限)的定义与性质。
3. 无穷小的概念、无穷小的性质、无穷小的比较、无穷大的概念、无穷小与无穷大其关系。
4. 证明数列或函数极限存在的方法:夹逼准则、单调有界准则
5. 求数列或函数极限的方法:四则运算法则、夹逼准则、单调有界准则、两个重要极限、等价无穷小、洛必达法则(未定式极限)、麦克劳林展开、导数的定义、定积分的定义、级数收敛的必要条件
1.3. 连续与间断
1. 连续的定义和性质
2. 间断点的定义和分类
3. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)
2. 微分学
2.1. 一元函数微分学
1. 导数的概念、几何意义、物理意义
2. 微分的概念
3. 函数的可导性与连续性之间的关系
4. 求导:基本初等函数的导数、求导法则(四则运算法则、复合函数链式法则、反函数求导法则、隐函数求导法则、参数式函数求导法则、取对数求导法则)、高阶导数
5. 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理
6. 泰勒公式、麦克劳林公式
7. 导数在几何上的应用:极值、单调性、凹凸性、拐点、渐近线(水平、铅直和斜渐近线)、函数图形的描绘、最值
8. 平面曲线的切线和法线、弧微分、曲率、曲率半径
2.2. 多元函数微分学
1. 多元函数的概念、二元函数的几何意义.
2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.
3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.
4. 多元复合函数、隐函数的求导法.
5. 二阶偏导数、方向导数和梯度.
6. 空间曲线的切线和法平面、曲面的切平面和法线.
7. 二元函数的二阶泰勒公式.
8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.
3. 积分学
3.1. 一元函数积分学
1. 原函数和不定积分的概念.
2. 不定积分的基本性质、基本积分公式.
3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.
4. 不定积分和定积分的换元积分法与分部积分法.
5. 有理函数、三角函数的有理式和简单无理函数的积分.
6. 广义积分.
7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.
3.2. 多元函数积分学
1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).
2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.
3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.
4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.
5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.
6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)
4. 微分方程
1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.
2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.
3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: .
4. 线性微分方程解的性质及解的结构定理.
5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.
6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积
7. 欧拉(Euler)方程.
8. 微分方程的简单应用
5. 无穷级数
1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.
2. 几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.
3. 任意项级数的绝对收敛与条件收敛.
4. 函数项级数的收敛域与和函数的概念.
5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.
6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.
7. 初等函数的幂级数展开式.
8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在 [-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数
6. 向量代数与空间解析几何
1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.
2. 两向量垂直、平行的条件、两向量的夹角.
3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.
4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.
5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.
6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.
7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.