【华为OJ】尼科彻斯定理

尼科彻斯定理:任何一个立方数都可以表示成底数个数的连续奇数之和

输入:底数

输出:连续奇数相加的字符串表达形式


#include<iostream>
using namespace std;

int main()
{
	int n;
	cin >> n;
	int cube = n*n*n;
	int aver = cube / n;
	if (n % 2 == 1)
	{
		for (int i = 0;i < n-1;i++)
			cout << aver -(n/2)*2 + 2 * i << '+';
		cout << aver - (n / 2) * 2 + 2*n - 2;
	}
	else
	{
		for (int i = 0;i < n - 1;i++)
			cout << aver - n + 1 + 2 * i << '+';
		cout << aver + n - 1;
	}	
	return 0;
}

正确但是感觉没有抓到这道题目的精髓所在,没有真正证明这个定理,而只是在陈述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值