尼科彻斯定理:任何一个立方数都可以表示成底数个数的连续奇数之和
输入:底数
输出:连续奇数相加的字符串表达形式
#include<iostream>
using namespace std;
int main()
{
int n;
cin >> n;
int cube = n*n*n;
int aver = cube / n;
if (n % 2 == 1)
{
for (int i = 0;i < n-1;i++)
cout << aver -(n/2)*2 + 2 * i << '+';
cout << aver - (n / 2) * 2 + 2*n - 2;
}
else
{
for (int i = 0;i < n - 1;i++)
cout << aver - n + 1 + 2 * i << '+';
cout << aver + n - 1;
}
return 0;
}
正确但是感觉没有抓到这道题目的精髓所在,没有真正证明这个定理,而只是在陈述。