RS
金石开1510
迁移学习、推荐系统、人工智能、深度学习
展开
-
推荐算法综述1
作者 百占辉 发布于 2015年12月23日 【编者按】推荐系统在各种系统中广泛使用,推荐算法则是其中最核心的技术点,InfoQ接下来将会策划系列文章来为读者深入介绍。推荐算法综述分文五个部分,本文作为第一篇,将会简要介绍推荐系统算法的主要种类。其中包括算法的简要描述、典型的输入、不同的细分类型以及其优点和缺点。在第二和第三篇中,我们将会详细介绍这些算法的区别,让你能够深入理解他们转载 2016-02-21 00:11:10 · 864 阅读 · 0 评论 -
推荐算法综述2
【编者按】推荐系统在各种系统中广泛使用,推荐算法则是其中最核心的技术点,InfoQ接下来将会策划系列文章来为读者深入介绍。推荐算法综述分文五个部分,本文作为第一篇,将会简要介绍推荐系统算法的主要种类。其中包括算法的简要描述、典型的输入、不同的细分类型以及其优点和缺点。在第二和第三篇中,我们将会详细介绍这些算法的区别,让你能够深入理解他们的工作原理。注:本文翻译自Building Recom转载 2016-02-21 00:12:32 · 784 阅读 · 0 评论 -
推荐算法综述3
【编者的话】近年来社交媒体已经越来越流行,可以从中获得大量丰富多彩的信息的同时,也给我们带来了严重的“信息过载”问题。推荐系统作为缓解信息过载的最有效方法之一,在社交媒体中的作用日趋重要。区别于传统的推荐方法,社交媒体中包含大量的用户产生内容,因此在社交媒体中,通过结合传统的个性化的推荐方法,集成各类新的数据、元数据和清晰的用户关系,产生了各种新的推荐技术。本文总结了推荐系统中的几个关键研究领域,转载 2016-02-21 00:19:39 · 791 阅读 · 0 评论 -
推荐算法综述4
【编者的话】近年来社交媒体已经越来越流行,可以从中获得大量丰富多彩的信息的同时,也给我们带来了严重的“信息过载”问题。推荐系统作为缓解信息过载的最有效方法之一,在社交媒体中的作用日趋重要。区别于传统的推荐方法,社交媒体中包含大量的用户产生内容,因此在社交媒体中,通过结合传统的个性化的推荐方法,集成各类新的数据、元数据和清晰的用户关系,产生了各种新的推荐技术。本文总结了推荐系统中的几个关键研究领域,转载 2016-02-21 00:22:16 · 677 阅读 · 0 评论 -
推荐算法综述5
【编者的话】近年来社交媒体已经越来越流行,可以从中获得大量丰富多彩的信息的同时,也给我们带来了严重的“信息过载”问题。推荐系统作为缓解信息过载的最有效方法之一,在社交媒体中的作用日趋重要。区别于传统的推荐方法,社交媒体中包含大量的用户产生内容,因此在社交媒体中,通过结合传统的个性化的推荐方法,集成各类新的数据、元数据和清晰的用户关系,产生了各种新的推荐技术。本文总结了推荐系统中的几个关键研究领域,转载 2016-02-21 00:24:02 · 666 阅读 · 0 评论 -
矩阵分解的推荐算法入门-好好看
本文将要讨论基于矩阵分解的推荐算法,这一类型的算法通常会有很高的预测精度,也活跃于各大推荐系统竞赛上面,前段时间的百度电影推荐最终结果的前10名貌似都是把矩阵分解作为一个单模型,最后各种ensemble,不知道正在进行的阿里推荐比赛( http://102.alibaba.com/competition/addDiscovery/index.htm),会不会惊喜出现。。。。好了,闲话不扯了,本文打原创 2016-02-22 02:52:11 · 1032 阅读 · 0 评论 -
推荐系统笔记一、基于近邻的推荐系统(基础篇)
Recommender Systems Handbook 第一版(2008年)是推荐系统方向入门的经典。7年后,第二版(2015年)终于诞生了,加入了这几年推荐系统领域的最新技术,又是state-of-the-art了吧,开始读书加笔记整理。。。一、概述: 协同过滤方法大致可以分成两类:基于近邻(neighborhood-based)的算法和基于模型(model-base转载 2016-04-19 04:42:35 · 627 阅读 · 0 评论 -
推荐系统笔记二、矩阵分解协同过滤
一、概述:矩阵分解模型是把用户偏好和item属性投影到同一个隐因子空间(latent factor space),以用户偏好和item属性的匹配程度来预测评分。通常推荐系统可以用于模型训练的信息主要有用户的显式反馈、隐式反馈和时间信息等。显式反馈(explicit feedback):用户直接表明对item的兴趣,例如评分[1,2,3,4,5]. 隐式反馈(implicit fee转载 2016-04-19 04:44:30 · 1031 阅读 · 0 评论 -
推荐系统笔记三、基于近邻的推荐系统进阶篇
一、概述:基于近邻的推荐算法在推荐系统中占有重要的地位,是学术界的一个重点研究方向,在产业界也得到了广泛的应用。基于近邻的推荐算法大致可以分为user-based和item-based两类,关于近邻推荐算法的基础性介绍,请参见博文: “推荐系统笔记一、基于近邻的推荐系统(基础篇)”。由于user-based方法和item-based方法的相似性,本文主要讨论item-based方法上的原创 2016-04-19 04:58:29 · 682 阅读 · 0 评论