PyTorch 自定义数据集

COCO128数据集预处理与YOLOv5定制Dataset实现详解
本文介绍了如何准备COCO128数据集,并详细展示了如何根据YOLOv5架构自定义一个数据集,包括`__init__`和`__getitem__`方法的实现,以及如何使用DataLoader进行批量数据加载。教程涵盖了从数据组织到数据处理的完整过程。

准备数据

准备 COCO128 数据集,其是 COCO train2017 前 128 个数据。按 YOLOv5 组织的目录:

$ tree ~/datasets/coco128 -L 2
/home/john/datasets/coco128
├── images
│   └── train2017
│       ├── ...
│       └── 000000000650.jpg
├── labels
│   └── train2017
│       ├── ...
│       └── 000000000650.txt
├── LICENSE
└── README.txt

详见 Train Custom Data

定义 Dataset

torch.utils.data.Dataset 是一个数据集的抽象类。自定义数据集时,需继承 Dataset 并覆盖如下方法:

  • __len__: len(dataset) 获取数据集大小。
  • __getitem__: dataset[i] 访问第 i 个数据。

详见:

自定义实现 YOLOv5 数据集的例子:

import os
from pathlib import Path
from typing import Any, Callable, Optional, Tuple

import numpy as np
import torch
import torchvision
from PIL import Image


class YOLOv5(torchvision.datasets.vision.VisionDataset):

  def __init__(
    self,
    root: str,
    name: str,
    transform: Optional[Callable] = None,
    target_transform: Optional[Callable] = None,
    transforms: Optional[Callable] = None,
  ) -> None:
    super(YOLOv5, self).__init__(root, transforms, transform, target_transform)
    images_dir = Path(root) / 'images' / name
    labels_dir = Path(root) / 'labels' / name
    self.images = [n for n in images_dir.iterdir()]
    self.labels = []
    for image in self.images:
      base, _ = os.path.splitext(os.path.basename(image))
      label = labels_dir / f'{base}.txt'
      self.labels.append(label if label.exists() else None)

  def __getitem__(self, idx: int) -> Tuple[Any, Any]:
    img = Image.open(self.images[idx]).convert('RGB')

    label_file = self.labels[idx]
    if label_file is not None:  # found
      with open(label_file, 'r') as f:
        labels = [x.split() for x in f.read().strip().splitlines()]
        labels = np.array(labels, dtype=np.float32)
    else:  # missing
      labels = np.zeros((0, 5), dtype=np.float32)

    boxes = []
    classes = []
    for label in labels:
      x, y, w, h = label[1:]
      boxes.append([
        (x - w/2) * img.width,
        (y - h/2) * img.height,
        (x + w/2) * img.width,
        (y + h/2) * img.height])
      classes.append(label[0])

    target = {}
    target["boxes"] = torch.as_tensor(boxes, dtype=torch.float32)
    target["labels"] = torch.as_tensor(classes, dtype=torch.int64)

    if self.transforms is not None:
      img, target = self.transforms(img, target)

    return img, target

  def __len__(self) -> int:
    return len(self.images)

以上实现,继承了 VisionDataset 子类。其 __getitem__ 返回了:

  • image: PIL Image, 大小为 (H, W)
  • target: dict, 含以下字段:
    • boxes (FloatTensor[N, 4]): 真实标注框 [x1, y1, x2, y2], x 范围 [0,W], y 范围 [0,H]
    • labels (Int64Tensor[N]): 上述标注框的类别标识

读取 Dataset

dataset = YOLOv5(Path.home() / 'datasets/coco128', 'train2017')
print(f'dataset: {len(dataset)}')
print(f'dataset[0]: {dataset[0]}')

输出:

dataset: 128
dataset[0]: (<PIL.Image.Image image mode=RGB size=640x480 at 0x7F6F9464ADF0>, {'boxes': tensor([[249.7296, 200.5402, 460.5399, 249.1901],
        [448.1702, 363.7198, 471.1501, 406.2300],
        ...
        [  0.0000, 188.8901, 172.6400, 280.9003]]), 'labels': tensor([44, 51, 51, 51, 51, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45,
        45, 50, 50, 50, 51, 51, 60, 42, 44, 45, 45, 45, 50, 51, 51, 51, 51, 51,
        51, 44, 50, 50, 50, 45])})

预览:

在这里插入图片描述

使用 DataLoader

训练需要批量提取数据,可以使用 DataLoader :

dataset = YOLOv5(Path.home() / 'datasets/coco128', 'train2017',
  transform=torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
  ]))

dataloader = DataLoader(dataset, batch_size=64, shuffle=True,
                        collate_fn=lambda batch: tuple(zip(*batch)))

for batch_i, (images, targets) in enumerate(dataloader):
  print(f'batch {batch_i}, images {len(images)}, targets {len(targets)}')
  print(f'  images[0]: shape={images[0].shape}')
  print(f'  targets[0]: {targets[0]}')

输出:

batch 0, images 64, targets 64
  images[0]: shape=torch.Size([3, 480, 640])
  targets[0]: {'boxes': tensor([[249.7296, 200.5402, 460.5399, 249.1901],
        [448.1702, 363.7198, 471.1501, 406.2300],
        ...
        [  0.0000, 188.8901, 172.6400, 280.9003]]), 'labels': tensor([44, 51, 51, 51, 51, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45,
        45, 50, 50, 50, 51, 51, 60, 42, 44, 45, 45, 45, 50, 51, 51, 51, 51, 51,
        51, 44, 50, 50, 50, 45])}
batch 1, images 64, targets 64
  images[0]: shape=torch.Size([3, 248, 640])
  targets[0]: {'boxes': tensor([[337.9299, 167.8500, 378.6999, 191.3100],
        [383.5398, 148.4501, 452.6598, 191.4701],
        [467.9299, 149.9001, 540.8099, 193.2401],
        [196.3898, 142.7200, 271.6896, 190.0999],
        [134.3901, 154.5799, 193.9299, 189.1699],
        [ 89.5299, 162.1901, 124.3798, 188.3301],
        [  1.6701, 154.9299,  56.8400, 188.3700]]), 'labels': tensor([20, 20, 20, 20, 20, 20, 20])}

源码

参考

APIs:

GoCoding 个人实践的经验分享,可关注公众号!

PyTorch允许您创建自定义数据集以便于加载和处理您自己的数据。以下是一个简单的示例来创建自定义数据集: 首先,您需要导入必要的库: ```python import torch from torch.utils.data import Dataset ``` 然后,创建一个继承自`Dataset`类的自定义数据集类,并实现以下方法: - `__init__`:初始化数据集,例如加载数据或设置转换。 - `__len__`:返回数据集的大小。 - `__getitem__`:根据给定的索引返回一个样本。 下面是一个示例,假设您有一组图像数据和相应的标签: ```python class CustomDataset(Dataset): def __init__(self, data, labels): self.data = data self.labels = labels def __len__(self): return len(self.data) def __getitem__(self, index): sample = self.data[index] label = self.labels[index] # 在这里进行必要的数据转换 return sample, label ``` 在上面的示例中,`data`是图像数据的列表,`labels`是相应的标签的列表。然后,您可以在`__getitem__`方法中执行必要的数据转换,例如将图像转换为张量或应用任何其他预处理步骤。 要使用自定义数据集,您可以创建一个实例并将其传递给`DataLoader`类: ```python # 假设您有图像数据和标签 data = [...] # 图像数据列表 labels = [...] # 标签列表 # 创建自定义数据集实例 dataset = CustomDataset(data, labels) # 创建数据加载器 dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True) ``` 现在,您可以使用`dataloader`来迭代加载批量的数据,并在训练模型时使用它们。 这只是一个简单的示例,您可以根据您的需求进行更多的自定义和扩展。希望这可以帮助到您!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值