- 博客(33)
- 收藏
- 关注
原创 【解决Ubuntun系统某病毒】绞杀CPU高占用率病毒
起因:最近一台ubuntun20.04服务器上运行python程序没多久就莫名其妙被杀死了,百思不得其解,得知貌似是中了挖矿病毒——top指令显示有一个诡异的CPU高占用率的进程,被杀死后过不久还会恢复,而且进程号改变。如图杀他!大家都劝我直接重装系统省心,我不想这样,想看看怎么直接解决问题。没有重装电脑解决问题,我很开心。不是计算机科班出身,具体原理不是很懂,似懂非懂的把病毒给杀了。写这篇博客是想记录找问题,解决问题的思路算是给自己或他人一点提示吧~
2024-01-25 20:51:26 1163
原创 论文阅读CVPR2022 《Language As Queries for Referring Video Object Segmentation》
自从读完DETR之后,一直对set prediction相关的工作比较感兴趣。所以又找了一篇关于transformer的query机制的工作,不过这次升级到video处理的更复杂的任务了(其实也没有多么复杂)
2022-09-02 17:42:33 1727
原创 论文阅读CVPR Maskformer和Mask2former
目前研究多将语义分割算法作为一种像素级的分类算法,而将实例分割作为一种mask分类算法论文的重要观点是:mask分类任务能够同时有效解决语义和实例级的分割任务基于上述观念,提出了MaskFormer,一种预测二值mask(每个mask用于预测一个类别)的mask分类模型实验显示,MaskFormer在ADE20K和COCO分割任务上实现state-of-the-art.........
2022-08-13 12:18:10 3201 1
原创 论文阅读 CVPR2022《Rethinking Semantic Segmentation:A Prototype View》
流行的语义分割解决方案,尽管它们有不同的网络设计(基于 FCN 或基于注意力)和掩码解码策略(基于参数 softmax 或基于像素查询),但可以通过将 softmax 权重或查询向量视为可学习类原型来归为一类。鉴于这种原型观点,本研究揭示了这种参数分割方案的几个局限性,并提出了一种基于不可学习原型的非参数替代方案。我们的模型不是以前的方法以完全参数化的方式为每个类学习单个权重/查询向量,而是将每个类表示为一组不可学习的原型,仅依赖于该类中几个训练像素的平均特征。因此,通过检索非参数最近原型来实现密集预测。这
2022-08-13 11:25:54 2815 6
原创 【李沐动手学深度学习】读书笔记 01前言
虽然之前已经学过这部分内容和深度学习中的基础知识,但总觉得学的不够系统扎实,所以希望再通过沐神的课程以及书籍,系统条理的学习一遍。在读书过程中,利用导图做了一下梳理,形成了这个读书笔记。如有侵权,请联系我删除。沐神的课非常好呀,很全面,包括了卷积神经网络的backbone、cv两个细分领域——目标检测和语义分割,原书链接在这里《动手学深度学习》。前言:机器学习基础背景想象一下,你正和你最聪明的一群朋友围绕着白板,试图解决以下问题之一:编写一个程序,给出地理信息、卫星图像和一些历史天气信息,来.
2022-04-12 09:53:45 526
原创 英语——复习思路
英语做一件事总想上升到正确的方法论哈哈。想到了一种准备复试英文的方法,或许这样做更加简洁高效。分享一下~构成为:由每一句/段落的自我介绍稿,引申出的可能存在的问题。英文水平有限,可能存在很多语法错误,本文目的仅为了提供准备的思路!!不是为了提供优秀范文和回答内容,感谢纠正~!
2022-03-23 18:22:02 334
原创 电脑网络问题——IPv4无Internet访问权限
前言最近这几天电脑经常出现连接着WiFi但无法上网的问题,我已经麻了orz。一开始以为电脑网卡驱动 / 系统出现bug了,测试发现能连接手机热点正常上网;又以为是路由器故障,但手机平板均可上网。然后懵圈。在各种折腾后,突然想到了看网络状态!于是有了下面的解决(sao)办法(操作)。目前还不明白其中的原理。。解决问题首先在控制面板里点“网络和Internet”,然后点“网络和共享中心”,点击左侧的“更改适配器”。出现下图图一右键WLAN,看到有“状态”,点击查看。如果图中出现IPv4连接
2022-03-15 19:07:16 53003 33
原创 【通信原理】复习笔记
一)绪论1.通信系统的基本组成、分类与通信方式2.通信系统主要性能指标(二)信道1.信道的定义及其数学模型2.恒参信道与随参信道特性及其对信号传输的影响3.信道加性白噪声、窄带高斯噪声4.离散信道容量和连续信道容量5.香农信道容量公式意义及应用(三)模拟调制系统1.模拟幅度调制系统的基本原理及其抗噪性能分析2.模拟调频系统的基本原理及其抗噪性能.
2022-03-09 00:41:20 9667
原创 【通信原理】复习笔记——模拟调制系统
调制的定义目的分类调制的定义:按调制信号(基带信号)的变化规律去改变载波的某些参数的过程称为载波调制。目的:将基带信号转换成适合在信道中传输的已调信号;实现信道的多路复用,;改善系统抗噪声性能分类:可按调制信号类别、载波、被调参数、已调信号谱结构分类本节讲的是模拟调制,分为线性(幅度 AM DSB SSB VSB)和非线性(频率 FM 和相位 PM)调制。各种幅度调制与解调原理已调信号的频谱仅仅是调制信号频谱搬移,所以也是线性调制AM:可采用包络检波(优点简单),频谱由载波分量和上下两边带组成
2022-03-07 23:33:51 19521
原创 【通信原理】复习笔记——信道
信道模型调制信道和编码信道恒参信道特性及对信号传输的影响一般指各种有线信道传输特性H(w)两种失真及其影响:幅频失真:1模拟信号——波形失真,信噪比下降2数字信号——码间串扰,误码率增大相频失真两者均属于线性失真,可以用线性网络补偿随参信道特性及对信号传输的影响许多无线信道传输特性,因为衰耗、时延、多径传播三个特点,产生一些影响。多径传播影响:1瑞利型衰落,振幅恒定、频率单一的正弦波变成了包络起伏变化的调幅波了。2频率扩展(频谱泄露的感觉)3频率选择性衰落:与信号频率及相对时延差t
2022-03-07 18:45:39 1450
原创 【PyTorch深度学习实践】学习笔记 第十节 卷积神经网络
课程链接PyTorch深度学习实践第十节课程。go go go~!卷积神经网络的基础知识中介绍了卷积核、池化等情况。简言之,我认为卷积是用来帮助我们提取特征的,但最终都要进入全连接层,代码import torchfrom torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as Fim
2022-02-27 23:33:39 799
原创 【PyTorch深度学习实践】第九节 变量分析 手写数字图像多分类
占坑~初学习,为了能以后更灵活的为自己所用,而不是想当然的去理解的话,一定要通过debug切实的看一看:1、程序运行的逻辑2、单步执行时各变量的内容,变化 等等,我个人认为这是一种积累,一定会有帮助的。加油!~完整程序及相关原理见第九节 实践篇 手写数字图像多分类未完待续 明天继续 一定整理完 卷积神经网络。冲啊,flag不能倒。等待整理中变量分析分类任务中的target理解onehot编码by 小李如果你坚持到这里了,请一定不要停,山顶的景色更迷人!好戏还在后面呢。加油!欢迎交
2022-02-19 18:02:33 715
原创 【PyTorch深度学习实践】学习笔记 第九节 实践篇 手写数字图像多分类
课程链接PyTorch深度学习实践第九节课程。go go go~!原理介绍在前面第六讲时,介绍过了可以将逻辑回归看做是仅含有一层神经元的单层的神经网络。一般用于二分类网络,线性可分的情况时是一个线性模型,激活函数为Sigmoid。在这里将引入更加令人激动的概念——多分类softmax分类器、交叉熵、通道等。1、 在二分类时,为了映射到0-1时,在线性模型输出后加了激活函数。而softmax的输入不需要再做非线性变换,也就是说softmax之前的不再需要激活函数(这里用的relu ,可见Si
2022-02-19 18:00:08 1092
原创 PyTorch 详细常用图像数据集加载及预处理(三种)
前言:from torch.utils.data import Datasetfrom torch.utils.data import DataLoaderimport torchvision.transforms as transforms1、Dataset 在 torch.utils.data2、无论是加载文本还是图像数据集,加载自定义数据集还是特殊格式还是加载官方提供的数据集都需要他。 DataLoader 在3、torch.utils.data 不管是文本还是图片都用这个包。 对图像
2022-02-19 15:14:23 12146 8
原创 【PyTorch深度学习实践】学习笔记 数据集的加载Dataset和DataLoader原理
简而言之,这俩就是自动帮我们取数据,避免了接触底层代码1、前言机器学习模型训练五大步骤;第一是数据,第二是模型,第三是损失函数,第四是优化器,第五个是迭代训练过程。这里主要学习数据模块当中的数据读取,数据模块通常还会分为四个子模块:数据收集、数据划分、数据读取、数据预处理。在进行实验之前,需要收集数据,数据包括原始样本和标签;有了原始数据之后,需要对数据集进行划分,把数据集划分为训练集、验证集和测试集;训练集用于训练模型,验证集用于验证模型是否过拟合,也可以理解为用验证集挑选模型的超参数,测试集
2022-02-18 16:01:18 2518 5
原创 PyTorch深度学习实践 系列学习笔记小结
本系列从梯度下降开始到卷积神经网络结束。写这个小结作为该系列课程快速回忆核心要点的一个笔记,帮助自己(习惯性输出后脑袋变空,遗忘严重orz)以后再复习,也希望能帮助到正在学习这个课程或同样复习的小伙伴。温故而知新哇!通过再次复习回忆该课程的笔记,越发佩服刘二大人的思路,太条理清晰啦!学习的内容真的是一个循序渐进的过程。我是一个初出茅庐的小白,即将踏上未知的科研道路。以后希望能从事算法岗,目前我的学习的思路是,先会用,熟练的用!才能在有了自己的idea之后,随心所欲、游刃有余设计自己的方法,训练模
2022-02-18 13:42:50 448
原创 【PyTorch深度学习实践】学习笔记 第八节 序 文本数据集的加载
课程链接PyTorch深度学习实践第八节课程。go go go~!这一讲将介绍非常重要的加载数据集的相关知识,加油·~~!学习到这里你应该非常激动,因为学会他们之后,马上你就能独自探索深度学习项目实践的世界了!!介绍:1、DataSet 是抽象类,不能实例化对象,主要是用于构造我们的数据集. 只能通过自定义一个class, 然后调用。就像前面torch.nn.Moduleclass LinearModel ( torch.nn.Module ):def _init_ (self):pass
2022-02-18 10:51:09 1190
原创 【PyTorch深度学习实践】学习笔记 第七节 多维特征数据的处理
课程链接PyTorch深度学习实践第七节课程。go go go~!通过前几期视频的学习,我们知道了关于一维特征的输入的二分类(也就是x只有一个列向量)应该如何处理了。但事情往往并不那么简单。比如下图这个预测一个人在一年之后得糖尿病的概率的例子,这个时候我们的输入将会有很多的指标。你可以把它看成是我们体检的各种值。最后一排的y代表了他是否会得糖尿病。那么多维的特征输入应该怎么办呢?我们就需要把每一个特征x给以相应的权重。在进行逻辑回归时,把每一个维度的x乘相应的权值的和加上一个偏置量,送入sigmoi
2022-02-17 11:14:04 1008
原创 【PyTorch深度学习实践】学习笔记 第六节 逻辑回归 二分类
课程链接PyTorch深度学习实践第六节课程。gogogo !说明:从训练角度:1、 逻辑斯蒂回归和线性模型的明显区别是在线性模型的后面,添加了激活函数(非线性变换),进行了0到1的映射,y_pred变成了概率的分布。从损失函数角度:2、分布的差异:KL散度,cross-entropy交叉熵(在第九讲会介绍,坚持哦!)。这个式子很好理解。y_pred经过sigmoid映射后,在0~1变成概率分布。如表格,y_pred越接近真实值y,则loss越小。(在第九讲会涉及one-hot概念)下面来看
2022-02-16 16:20:30 374
原创 【PyTorch深度学习实践】学习笔记 第五节 线性回归
课程链接PyTorch深度学习实践第五节课程。go go go~!首先回忆一下深度学习熟悉的配方,老四样:1、prepare dataset2、design model using Class # 目的是为了前向传播forward,即计算y_hat(预测值)3、Construct loss and optimizer (using PyTorch API) 其中,计算loss是为了进行反向传播,optimizer是为了更新梯度。4、Training cycle (forward,backwar
2022-02-16 15:23:40 566
原创 pytorch 之 batchsize与epoch的关系
随机梯度下降随机梯度下降(Stochastic Gradient Descent,简称SGD)是一种用于训练机器学习算法的优化算法,最值得注意的是深度学习中使用的人工神经网络。该算法的工作是找到一组内部模型参数,这些参数在某些性能测量中表现良好,例如对数损失或均方误差。优化是一种搜索过程,您可以将此搜索视为学习。优化算法称为“ 梯度下降 ”,其中“ 梯度 ”是指误差梯度或误差斜率的计算,“下降”是指沿着该斜率向下移动到某个最小误差水平。该算法是迭代的。这意味着搜索过程发生在多个不连续的步骤上,每个步骤
2022-02-16 14:58:09 6727
原创 pytorch 之tensor的基础知识
一、 PyTorch中,Tensor和tensor首先,我们需要明确一下,torch.Tensor()是python类,更明确地说,是默认张量类型torch.FloatTensor()的别名,torch.Tensor([1,2])会调用Tensor类的构造函数__init__,固定地生成单精度浮点类型的张量。>>> a=torch.Tensor([1,2])>>> a.type()'torch.FloatTensor' #生成单精度浮点类型的张量。而to
2022-02-15 15:26:22 8644
原创 pytorch中计算图的理解
pytorch的计算图pytorch是动态图机制,所以在训练模型的时候,每迭代一次都会构建一个新的计算图。而计算图代表着程序中变量之间的关系。y = ( a + b ) ( b + c ) y=(a+b)(b+c)y=(a+b)(b+c)在这个运算过程就会建立一个如下的计算图。在这个计算图中,叶子节点(leaf_node)就是参与运算的变量。这个图里面只有a,b,c是leaf_node。之所以要关注leaf_node,因为计算网络在反向传播的时候,需要根据链式求导法则求出网络最后输出的梯度,然后再对网络.
2022-02-15 11:54:46 1698
原创 【PyTorch深度学习实践】学习笔记 第四节 反向传播
课程链接PyTorch深度学习实践开始正题前,先做一个知识的补充,关于python的张量——tensor。(不要小看这些细节,有模糊的地方一定要及时搞清楚┗|`O′|┛ 嗷,以防在后面越来越多的使用中出现迷糊。)首先,我们需要明确一下,torch.Tensor()是python类,更明确地说,是默认张量类型torch.FloatTensor()的别名,torch.Tensor([1,2])会调用Tensor类的构造函数__init__,固定地生成单精度浮点类型的张量。>>> a=
2022-02-15 11:04:07 612
原创 【PyTorch深度学习实践】学习笔记 第三节 梯度下降
开头去年三月份学习的PyTorch深度学习实践课程,当时在有道笔记做了笔记并且实践了。现在好久没接触已经忘了。。。orz回顾了下当时写的毕设路线—pytorch环境下的深度学习的高光谱图像分类问题文章,决定整理一下笔记,也为了能快速复习。希望按照这里面的顺序,把坑都填上,立个flag,这一周把坑都回顾一遍。Let’sgo!这节课是最基础的一节之一,是自己定义的损失函数cost和计算梯度grad,能更好的理解原理。在今后的深度学习项目都是直接用的torch里的packages的封装函数了。imp
2022-02-14 17:42:51 477
原创 毕设路线—pytorch环境下的深度学习的高光谱图像分类问题
毕设快要结束了,一路走来一直记录着点点滴滴的技术内容,主要想写给自己看吧,作为一个项目整理的大致框架,改完最终定稿,再填补每一部分的细节。另外如果以后有做这个方向的朋友看到了,希望能提供一点小小的帮助吧,在下面附上了整个学习路线的各种视频课程的链接和自己的学习笔记链接,万福噢!欢迎批评指正不正确的内容和笔记里的错误。前言1、因为论文读的少,研究的深度不够,导致内容整体看下来很肤浅,体现的工作量很小,给人的感觉不过是调用了API,修改了一下参数,跑了遍数据集而已,没有任何的新颖的添加。————实验结果的
2021-05-09 16:57:56 11074 26
原创 pytorch 自定义数据集载入(标签在csv文件里)
在跑别人的项目的过程中,遇到的第一个大障碍是自定义数据集加载。本文主要讲关于如何让PyTorch能读取自己的数据集,不涉及dataloader机制。查阅了一些博客还有文章了解到,要让PyTorch能读取自己的数据集,只需要两步:1. 制作图片数据的索引表2. 构建Dataset子类详细参考链接:https://zhuanlan.zhihu.com/p/52807406然而,如何制作这个list呢,通常的方法是将图片的路径和标签信息存储在一个txt中,然后从该txt中读取。困扰我的不是
2021-04-01 16:46:53 6973 4
原创 2020中南大学信息与通信夏令营面试
做PPT展示,就PPT里面提到的一切可能内容提问,问到了 :matlab中对矩阵最基本的操作:转置、取列/行电子设计大赛担任什么角色,干了什么:数字频率计怎么做的,用什么实现的;故障判断怎么判断的数学建模的Kmeans聚类的思想方法,图论用了哪些?最短路径里的Dijkstra算法思想。介绍一下主成分分析英文做个自我介绍英文说一下你的competition project英文说一下你的interest research有点遗憾没有发挥好自己的兴趣方向方面,没有表达清楚。.
2020-07-23 22:51:32 916
原创 计算机专业及互联网类岗位等相关话题 笔记
一、互联网类一)纯技术1、后端 也叫服务端后台各种存储和计算服务,给前端提供一些展示内容,除了编程语言外,有内存存储和数据库应用,一堆存储(专业术语terms) 倒排索引的存储,一些通用的中间存储和消息服务。还要个主流的prevalent 后端编程语言以及实战中的框架Java -——>javascript python ——>flask 或djangoPHP也会有对应的东西2、前端从后端拿到数据后,在手机端或在手机的网页端或电脑的桌面浏览器,来做页面展示,设计布局。除此之外还有
2020-05-28 19:06:56 807
原创 matlab中 FFT 的意义 学习记录
matlab中 FFT 函数的使用 学习记录1、学习启示N=1024; %采样点数为1024Fs=1000; %采样频率为1000Hzt=[0:1/Fs:(N-1)/Fs]; %采样时刻 t的长为Ns=2+3*cos(2*pi*200*t+60*pi/180)+4*cos(2*pi*300*t+120*pi/180); %对信号采样 这里注意是连续t 因为已经对时间做了nt处理了Y=fft(s); %FFT运算y=abs(Y); for i=1:N/2; x(i)=(i-1)*Fs
2020-05-27 17:24:40 704
原创 Git bash教程 学习记录
最近想加入GitHub的圈子里,在网上找了半天博客,漂到了关于github的远程仓库与本地仓库如何建立联系的一篇博客,然后下载了git bash。首先非常感谢一个可爱聪明的小姐姐写的几篇博客,在她的帮助下,我尝试自己再梳理整理一下自己的理解与思路。附上小姐姐和另一个人的链接https://blog.csdn.net/qq_36667170/article/details/79085301?...
2020-05-07 20:24:27 217
原创 嵌入式系统学习笔记
嵌入式系统学习笔记https://app.yinxiang.com/fx/97dd59b5-21f1-470c-969c-d3509ee38fce
2020-03-18 08:46:15 136
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人