简单组合学(3) Polya计数定理(1)

本文介绍了Polya计数定理的基本概念,通过举例说明了在不固定位置时摆放球的不同情况,揭示了计算中可能存在的重复计数问题。此外,文章深入探讨了对称群的概念,包括置换、轮换、群和子群的性质,并以等边三角形的置换为例展示了群论在几何中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单组合学(3)

Polya计数定理(1)

§ § 1 引言

在固定的正六边形顶点上摆放一个黑球、一个红球和四个白球的方法有多少种,读过初中的人一定能够轻而易举地得到答案,读过小学的人也能够枚举所有结果,答案是 6×5=30 6 × 5 = 30 种.
但是如果不固定呢?学过高中化学的应该有所印象,一共是 3 3 种(联系一下二甲苯的种类,这三种分别是对二甲苯,间二甲苯和邻二甲苯).
之所以有这种不同,是因为后者不同摆放的方式因为结构相同的原因而被重复计算了,这就使得得到的结果是错误的.

§2 对称群

1.置换与轮换

对于一个三角形来说,调换顶点的方式,称为运动(几何置换).
列举出等边三角形ABC的所有置换:
(AABBCC)(AABCCB)(ABBACC) (ACBBCA)(ABBCCA)(ACBACB) ( A B C A B C ) 、 ( A B C A C B ) 、 ( A B C B A C ) 、   ( A B C C B A ) 、 ( A B C B C A ) 、 ( A B C C A B )
显然这又可以写成 I=(A)(B)(C)X=(A)(B C)Y=(AB)(C)P=(A C)(B)Q=(A B C)R=(A C B) I = ( A ) ( B ) ( C ) 、 X = ( A ) ( B   C ) 、 Y = ( A B ) ( C ) 、 P = ( A   C ) ( B ) 、 Q = ( A   B   C ) 、 R = ( A   C   B )
置换,轮换如何去写,基本在所有的近世代数或者抽象代数的书里都会有涉及,另外这种记法也是简明易懂的,所以在这里就不会去解释是怎么来的.

2.群与子群

集合 G G 及运算满足
(1)(2)(3),a(bc)=(ab)c.,eG,s.txG,xe=ex=x,xG,bG,s.t.ab=e,e(2) ( 1 ) 结 合 律 , a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c . ( 2 ) 存 在 单 位 元 , ∃ e ∈ G , s . t ∀ x ∈ G , x ∘ e = e ∘ x = x ( 3 ) 每 个 元 素 存 在 逆 元 , ∀ x ∈ G , ∃ b ∈ G , s . t . a ∘ b = e , e 由 ( 2 ) 定 义
集合 G G 及运算就组成了一个代数系统,称为群.

Example 2.1 Example 2.1 在1的置换中,对于任意三角形ABC,如果先进行一次Q置换,再进行一次R置换,所得到的三角形与原来没有任何差别,另外我们发现进行一次I置换和原来没有任何差别.我们知道置换的本质就是一个映射,那么由映射的复合: QR=I Q ∘ R = I .另外可以发现以下表运算.
abIXYPQRIIXYPQRXXIQRPYYYRIQXPPPQRIYXQQYPXRIRRPXYIQ a ∘ b I X Y P Q R I I X Y P Q R X X I R Q Y P Y Y Q I R P X P P R Q I X Y Q Q P X Y R I R R Y P X I Q
所以三角形的运动组成了一个对称群(显然,我们可以看见群不一定满足交换律!).
G G 的子集H上的运算如果依然满足群的定义,那么把 H, ⟨ H , ∘ ⟩ 称为 G G 的子群,显然在上例中,{I,X,Y,P} G G 的子群,{I,Q,R}也是 G G 的子群(习惯问题,群也可以指为运算中的集合).
并且如果把Sn称为n顶点中的所有置换组成的群,三角形的运动恰巧组成了 S3 S 3 (事实上正n边形的运动不一定都与置换群相等).
Example 2.2 Example 2.2 如果在空间取定一个立方体 12345678 1234 − 5678 ,对其以任意角度进行旋转,其中有部分运动构成对称的置换.

(1)(2)(3)(4)θ12345678;线,,(x90);线,,(x120);线,,(x180); ( 1 ) 单 位 元 θ 对 定 体 1234 − 5678 进 行 不 动 变 换 ; ( 2 ) 以 对 面 心 连 线 为 轴 的 旋 转 , 一 共 三 个 , 每 个 轴 有 四 个 不 同 的 旋 转 ( x ⋅ 90 ∘ ) ; ( 3 ) 以 对 顶 点 连 线 为 轴 的 旋 转 , 一 共 四 个 , 每 个 轴 有 三 个 不 同 的 旋 转 ( x ⋅ 120 ∘ ) ; ( 4 ) 以 对 边 中 点 连 线 为 轴 的 旋 转 , 一 共 六 个 , 每 个 轴 有 两 个 不 同 的 旋 转 ( x ⋅ 180 ∘ ) ;

(csdn这里加载得好丑!不得不用 $ $… $ $了)
但是(2)(3)(4)均包括了一个不动变换,因此一共有 1+3(41)+4(31)+6(21)=24 1 + 3 ( 4 − 1 ) + 4 ( 3 − 1 ) + 6 ( 2 − 1 ) = 24 个不同的对称置换,这 24 24 个不同置换构成了立方体的旋转群,可以知道这直接确定了六元(面)、八元(边)、十二元(顶点)的 24 24 阶置换群.
Example 2.3 Example 2.3 如果令 π=(1 2  N) π = ( 1   2   …   N ) 为N-轮换,则其对正N边形上顶点进行置换,并且所有的 π π 复合构成群, CN={π1,,πN=e} C N = { π 1 , … , π N = e } ,由于单一元素 π π 即可生成所有的元素,所以称其为N阶循环群,也记作 π ⟨ π ⟩ .如果令 σ σ 为正N边型某一对称轴的 180 180 ∘ 旋转变换,那么可以知道 σ σ 也产生一个顶点的置换, σ σ 的特点是:
N=2n1(nN+)σ(1122n1nn+1n+1n22n1) =(1)(2 2n1)(3 2n2)(n n+1) N = 2 n − 1 ( n ∈ N + ) 时 σ ( 1 2 … n n + 1 … 2 1 2 n − 1 … n + 1 n … 2 n − 1 )   = ( 1 ) ( 2   2 n − 1 ) ( 3   2 n − 2 ) … ( n   n + 1 ) ,其完全轮换分解有n个表示为 112n1 1 1 2 n − 1 型轮换.
N=2n(nN+)σ(12n22n1nn+1n+1n22n111) =(1 2n)(2 2n1)(3 2n2)(n n+1) N = 2 n ( n ∈ N + ) 时 σ ( 1 2 … n n + 1 … 2 1 2 n 2 n − 1 … n + 1 n … 2 n − 1 1 )   = ( 1   2 n ) ( 2   2 n − 1 ) ( 3   2 n − 2 ) … ( n   n + 1 ) ,其完全轮换分解有n个表示为 2n 2 n 型轮换.
总的来说 DN=σCN D N = σ C N 也为一个群,称其为N阶二面体群(因为平面图形表现出了空间的性质,具有正反两面).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值