简单组合学(3)
Polya计数定理(1)
§ § 1 引言
在固定的正六边形顶点上摆放一个黑球、一个红球和四个白球的方法有多少种,读过初中的人一定能够轻而易举地得到答案,读过小学的人也能够枚举所有结果,答案是
6×5=30
6
×
5
=
30
种.
但是如果不固定呢?学过高中化学的应该有所印象,一共是
3
3
种(联系一下二甲苯的种类,这三种分别是对二甲苯,间二甲苯和邻二甲苯).
之所以有这种不同,是因为后者不同摆放的方式因为结构相同的原因而被重复计算了,这就使得得到的结果是错误的.
2 对称群
1.置换与轮换
对于一个三角形来说,调换顶点的方式,称为运动(几何置换).
列举出等边三角形ABC的所有置换:
(AABBCC)、(AABCCB)、(ABBACC)、 (ACBBCA)、(ABBCCA)、(ACBACB)
(
A
B
C
A
B
C
)
、
(
A
B
C
A
C
B
)
、
(
A
B
C
B
A
C
)
、
(
A
B
C
C
B
A
)
、
(
A
B
C
B
C
A
)
、
(
A
B
C
C
A
B
)
显然这又可以写成
I=(A)(B)(C)、X=(A)(B C)、Y=(AB)(C)、P=(A C)(B)、Q=(A B C)、R=(A C B)
I
=
(
A
)
(
B
)
(
C
)
、
X
=
(
A
)
(
B
C
)
、
Y
=
(
A
B
)
(
C
)
、
P
=
(
A
C
)
(
B
)
、
Q
=
(
A
B
C
)
、
R
=
(
A
C
B
)
置换,轮换如何去写,基本在所有的近世代数或者抽象代数的书里都会有涉及,另外这种记法也是简明易懂的,所以在这里就不会去解释是怎么来的.
2.群与子群
集合
G
G
及运算满足
(1)(2)(3)结合律,a∘(b∘c)=(a∘b)∘c.存在单位元,∃e∈G,s.t∀x∈G,x∘e=e∘x=x每个元素存在逆元,∀x∈G,∃b∈G,s.t.a∘b=e,e由(2)定义
(
1
)
结
合
律
,
a
∘
(
b
∘
c
)
=
(
a
∘
b
)
∘
c
.
(
2
)
存
在
单
位
元
,
∃
e
∈
G
,
s
.
t
∀
x
∈
G
,
x
∘
e
=
e
∘
x
=
x
(
3
)
每
个
元
素
存
在
逆
元
,
∀
x
∈
G
,
∃
b
∈
G
,
s
.
t
.
a
∘
b
=
e
,
e
由
(
2
)
定
义
集合
G
G
及运算就组成了一个代数系统,称为群.
Example 2.1
Example 2.1
在1的置换中,对于任意三角形ABC,如果先进行一次Q置换,再进行一次R置换,所得到的三角形与原来没有任何差别,另外我们发现进行一次I置换和原来没有任何差别.我们知道置换的本质就是一个映射,那么由映射的复合:
Q∘R=I
Q
∘
R
=
I
.另外可以发现以下表运算.
a∘bIXYPQRIIXYPQRXXIQRPYYYRIQXPPPQRIYXQQYPXRIRRPXYIQ
a
∘
b
I
X
Y
P
Q
R
I
I
X
Y
P
Q
R
X
X
I
R
Q
Y
P
Y
Y
Q
I
R
P
X
P
P
R
Q
I
X
Y
Q
Q
P
X
Y
R
I
R
R
Y
P
X
I
Q
所以三角形的运动组成了一个对称群(显然,我们可以看见群不一定满足交换律!).
群
G
G
的子集上的运算如果依然满足群的定义,那么把
⟨H,∘⟩
⟨
H
,
∘
⟩
称为
G
G
的子群,显然在上例中,是
G
G
的子群,也是
G
G
的子群(习惯问题,群也可以指为运算中的集合).
并且如果把称为n顶点中的所有置换组成的群,三角形的运动恰巧组成了
S3
S
3
(事实上正n边形的运动不一定都与置换群相等).
Example 2.2
Example 2.2
如果在空间取定一个立方体
1234−5678
1234
−
5678
,对其以任意角度进行旋转,其中有部分运动构成对称的置换.
(csdn这里加载得好丑!不得不用 $ $… $ $了)
但是(2)(3)(4)均包括了一个不动变换,因此一共有 1+3(4−1)+4(3−1)+6(2−1)=24 1 + 3 ( 4 − 1 ) + 4 ( 3 − 1 ) + 6 ( 2 − 1 ) = 24 个不同的对称置换,这 24 24 个不同置换构成了立方体的旋转群,可以知道这直接确定了六元(面)、八元(边)、十二元(顶点)的 24 24 阶置换群.
Example 2.3 Example 2.3 如果令 π=(1 2 … N) π = ( 1 2 … N ) 为N-轮换,则其对正N边形上顶点进行置换,并且所有的 π π 复合构成群, CN={π1,…,πN=e} C N = { π 1 , … , π N = e } ,由于单一元素 π π 即可生成所有的元素,所以称其为N阶循环群,也记作 ⟨π⟩ ⟨ π ⟩ .如果令 σ σ 为正N边型某一对称轴的 180∘ 180 ∘ 旋转变换,那么可以知道 σ σ 也产生一个顶点的置换, σ σ 的特点是:
N=2n−1(n∈N+)时σ(1122n−1……nn+1n+1n……22n−1) =(1)(2 2n−1)(3 2n−2)…(n n+1) N = 2 n − 1 ( n ∈ N + ) 时 σ ( 1 2 … n n + 1 … 2 1 2 n − 1 … n + 1 n … 2 n − 1 ) = ( 1 ) ( 2 2 n − 1 ) ( 3 2 n − 2 ) … ( n n + 1 ) ,其完全轮换分解有n个表示为 112n−1 1 1 2 n − 1 型轮换.
N=2n(n∈N+)时σ(12n22n−1……nn+1n+1n……22n−111) =(1 2n)(2 2n−1)(3 2n−2)…(n n+1) N = 2 n ( n ∈ N + ) 时 σ ( 1 2 … n n + 1 … 2 1 2 n 2 n − 1 … n + 1 n … 2 n − 1 1 ) = ( 1 2 n ) ( 2 2 n − 1 ) ( 3 2 n − 2 ) … ( n n + 1 ) ,其完全轮换分解有n个表示为 2n 2 n 型轮换.
总的来说 DN=σCN D N = σ C N 也为一个群,称其为N阶二面体群(因为平面图形表现出了空间的性质,具有正反两面).