Keras学习笔记5——keras.losses

这篇博客介绍了Keras中两种重要的损失函数——logcosh和categorical_crossentropy。logcosh函数在小误差时类似均方误差,但对极端误差不敏感,而categorical_crossentropy适合处理多分类问题,要求目标值以one-hot编码表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

损失函数(或称目标函数、优化评分函数)是编译模型时所需的两个参数之一:

from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sgd')
# or
model.compile(loss='mean_squared_error', optimizer=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值