数据结构—哈夫曼编码

本文介绍了哈夫曼编码的基本概念,它是数据压缩中的一种经典算法,通过构建哈夫曼树来优化字符编码。文章详细阐述了如何根据字符频率构建哈夫曼树,并提供了Java实现哈夫曼编码的思路,包括使用双亲孩子表示法构造树以及从叶子节点向上扫描生成编码的过程。
摘要由CSDN通过智能技术生成

数据结构—哈夫曼编码

1.哈夫曼树简介
哈夫曼(Huffman)编码算法是基于二叉树构建编码压缩结构的,它是数据压缩中经典的一种算法。算法根据文本字符出现的频率,重新对字符进行编码。因为为了缩短编码的长度,我们自然希望频率越高的词,编码越短,这样最终才能最大化压缩存储文本数据的空间。

我们使用二叉树来构建哈夫曼树并生成哈夫曼编码. 实际上,哈夫曼树构造的过程就是最优二叉树的构建过程.例如:如果{a,b,c,d,e} 的权值为 {5,8,2,10,13},则生成的最优二叉树为:
在这里插入图片描述
生成哈夫曼树之后,各个需要编码的元素的编码也就得到了:
a:001, b:01, c:000, d:10, e:11
我们可以发现哈夫曼树有一些特点:

  • 每个需要编码的元素在哈夫曼树中都是作为叶子节点(避免出现前缀冲突)
  • 元素的权值越大,编码也就越短(频率越高,编码越短)

2.java实现哈弗曼编码
要实现哈夫曼编码,首先要构造出一颗哈夫曼树,那么应该采取怎么样的方法呢?继续使用之前的链式表示吗?仔细想一想,之前使用链式表示二叉树时,我们是从上向下构造二叉树的,但是现在如果要构造哈夫曼树,要遵循构造最优二叉树的规则,所以是从下向上构造整颗树的,所以,这里我们用双亲孩子表示法,用类型数组来表示整颗哈夫曼树

  • 数据结构:
/**
 * 哈夫曼树每个节点的数据结构
 */
class HfTree {
    char charset;
    int weight;
    int parent;
    int leftChild;
    int rightChild;

    public HfTree() {
        this.parent = -1;
        this.leftChild = -1;
        this.rightChild = -1;
    }

    @Override
    public String toString() {
        return " " + charset +
                "," + weight +
                "," + parent +
                "," + leftChild +
                "," + rightChild;
    }
}
/**
 * 哈夫曼编码的数据结构
 */
class HfCode {
    char charset;
    int index;
    Deque code;

    public HfCode() {
    }

    public HfCode(char charset, int index) {
        this.charset = charset;
        this.index = index;
    }
}

构造哈夫曼树的过程:

/**
     * 构造哈夫曼树
     * @param ht
     * @param n
     */
    public static void createHuffmanTree(HfTree[] ht, int n) {
        for (int i = n; i < 2*n-1; i++) {
            ht[i] = new HfTree();
        }
        for (int i = n; i < 2*n-1; i++) {
            MyMin m = select(ht,i-1);
            ht[i].weight = ht[m.min].weight + ht[m.nextMin].weight;
            ht[i].leftChild = m.min;
            ht[i].rightChild = m.nextMin;
            ht[m.min].parent = i;
            ht[m.nextMin].parent =
哈夫曼编码是一种用于数据压缩的方法,它基于字符出现频率来构建最优的编码表。下面是哈夫曼编码的译码和编码过程: 1. 哈夫曼编码: - 统计字符出现频率,并根据频率构建哈夫曼树。频率较高的字符位于树的较低层。 - 通过从根到叶子节点的路径上的0和1来表示字符,构建编码表。 - 使用编码表将输入文本中的字符替换为对应的哈夫曼编码。 2. 哈夫曼译码: - 使用相同的哈夫曼树和编码表,读取编码后的二进制数据。 - 从根节点开始,按照读取到的0或1依次向左或向右移动,直到达到叶子节点。每次到达叶子节点后,输出对应的字符,并重新回到根节点继续读取。 下面是一个示例,展示如何使用哈夫曼编码和译码来进行数据压缩和解压缩: 假设我们有以下文本:C知道 编程是很有趣的! 1. 统计字符频率并构建哈夫曼树: 字符频率:{空格: 4, C: 2, 知: 2, !: 1, 程: 1, 译: 1, 是: 1, 有: 1, 趣: 1, 的: 1, 编: 1, 码: 1} 构建的哈夫曼树如下: [11] / \ / \ / \ / \ / \ / \ / \ C 知 ␣ ! 程 译 \ \ / \ 是 有 \ \ \ / \ 趣 的 构建的编码表如下: C: 00 知: 01 ␣: 100 !: 1010 程: 1011 译: 1100 是: 11010 有: 11011 趣: 11100 的: 11110 编: 111110 码: 111111 2. 编码: 将输入文本中的字符替换为对应的哈夫曼编码,得到编码后的二进制数据:00 01 100 111110 1011 1100 11010 11011 11100! 3. 解码: 根据相同的哈夫曼树和编码表,读取编码后的二进制数据进行译码,得到原始文本:C知道 编程是很有趣的!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值