利用eclipse编写自定义hive udf函数

在做日志分析的过程中,用到了hadoop框架中的hive,不过有些日志处理用hive中的函数处理显得力不从心,就需要用udf来进行扩展处理了

1  在eclipse中新建java project   hiveudf   然后新建class  package(com.afan)  name(UDFLower)

2  添加jar library  hadoop-0.20.2-core.jar   hive-exec-0.7.0-cdh3u0.jar两个文件到project

3  编写代码


  1. package com.afan;  
  2. import org.apache.hadoop.hive.ql.exec.UDF;  
  3. import org.apache.hadoop.io.Text;  
  4.   
  5. public class UDFLower extends UDF{  
  6.     public Text evaluate(final Text s){  
  7.         if (null == s){  
  8.             return null;  
  9.         }  
  10.         return new Text(s.toString().toLowerCase());  
  11.     }  
  12. }  
4  编译输出打包文件为   udf_hive.jar


5 将udf_hive.jar放入配置好的linux系统的文件夹中路径为/home/udf/udf_hive.jar

6 打开hive命令行测试

   hive> add jar /home/udf/udf_hive.jar;

Added udf_hive.jar to class path
Added resource: udf_hive.jar

创建udf函数
hive> create temporary function my_lower as 'com.afan.UDFLower';

创建测试数据
hive> create table dual (info string);

导入数据文件data.txt

data.txt文件内容为

WHO

AM

I

HELLO

hive> load data local inpath '/home/data/data.txt' into table dual;

hive> select info from dual;

Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0003, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0003
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0003
2011-05-15 06:46:05,459 Stage-1 map = 0%,  reduce = 0%
2011-05-15 06:46:10,905 Stage-1 map = 100%,  reduce = 0%
2011-05-15 06:46:13,963 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201105150525_0003
OK
WHO
AM
I
HELLO

使用udf函数
hive> select my_lower(info) from dual;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0002, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0002
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0002
2011-05-15 06:43:26,100 Stage-1 map = 0%,  reduce = 0%
2011-05-15 06:43:34,364 Stage-1 map = 100%,  reduce = 0%
2011-05-15 06:43:37,484 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201105150525_0002
OK
who
am
i
hello

经测试成功通过

参考文章http://landyer.iteye.com/blog/1070377

——————————————————————————————————

1、编写函数

  1. package com.example.hive.udf;  
  2.   
  3. import org.apache.hadoop.hive.ql.exec.UDF;  
  4. import org.apache.hadoop.io.Text;  
  5.   
  6. public final class LowerCase extends UDF {  
  7.   public Text evaluate(final Text s) {  
  8.     if (s == null) { return null; }  
  9.     return new Text(s.toString().toLowerCase());  
  10.   } 
  11. }  
2、用eclipse下的fatjar插件进行打包
先下载net.sf.fjep.fatjar_0.0.31.jar插件包,cp至eclipse/plugins目录下,重启eclipse,右击项目选Export,选择用fatjar导出(可以删掉没用的包,不然导出的jar包很大)
3、将导出的hiveudf.jar复制到hdfs上
hadoop fs -copyFromLocal hiveudf.jar hiveudf.jar
4、进入hive,添加jar,
add jar hdfs://localhost:9000/user/root/hiveudf.jar
5、创建一个临时函数
create temporary function my_lower as 'com.example.hive.udf.LowerCase';
6、调用
select LowerCase(name) from teacher;
注:这种方法只能添加临时的函数,每次重新进入hive的时候都要再执行4-6,要使得这个函数永久生效,要将其注册到hive的函数列表
添加函数文件$HIVE_HOME/src/ql/src/java/org/apache/hadoop/hive/ql/udf/UDFLowerCase.java
修改$HIVE_HOME/src/ql/src/java/org/apache/hadoop/hive/ql/exec/FunctionRegistry.java文件
import org.apache.hadoop.hive.ql.udf.UDFLowerCase;
registerUDF(“LowerCase”, UDFLowerCase.class,false);
(上面这个方法未测试成功)
为了避免每次都有add jar 可以设置hive的'辅助jar路径' 
在hive-env.sh中 export HIVE_AUX_JARS_PATH=/home/ckl/workspace/mudf/mudf_fat.jar; 


from:http://blog.chinaunix.net/uid-28194925-id-3453844.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值