多年大数据开发经验总结

初入行,搞大数据开发。得高人指点,先学mapreduce,不足一年,tez兴,后入此道。朝夕不倦,发愤图强,才能略知一二。无奈后浪推前浪,tez被spark拍在沙滩上,遂投spark之怀。继而抖擞精神,奋袂而起,github、stackoverflow轮番上阵,终七窍通六窍。然乾坤更替,岁月不复,spark转眼成过眼烟云,flink、 beam之流成业界新宠,一时洛阳纸贵,众人皆言。本人虽年事已高,但迫于生计亦弃旧爱投新欢。此期间,为求得一技之长,亦苦练drill,kylin,storm,greenplum,presto,impala,hive,pig,春去秋来,笔耕不辍,终于十八般武艺样样精通,择今之吉日欲出山,然hawq出,卒!

写于2018年8月24日 ,hawq为昨日刚晋升为apache顶级项目的大数据开源工具

已标记关键词 清除标记
本教程为授权出品 一、课程简介 数据仓库(Data Warehouse,可简写为DW或DWH),是面向分析的集成化数据环境,为企业决策制定过程,提供系统数据支持的战略集合,是国内外各大公司正在重点投入的战略级技术领域。 二、课程内容 《大数据电商数仓项目实战》视频教程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。 三、课程目标 本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。 四、课程亮点 本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页