yarn内存参数

参考自: 

1)http://blog.chinaunix.net/uid-28311809-id-4383551.html
2)https://support.pivotal.io/hc/en-us/articles/201462036-Mapreduce-YARN-Memory-Parameters 

1、yarn-site.xml 设置

1.1 RM设置

RM的内存资源配置,主要是通过下面的两个参数进行的(这两个值是Yarn平台特性,应在yarn-sit.xml中配置好): 
yarn.scheduler.minimum-allocation-mb 
yarn.scheduler.maximum-allocation-mb
说明:单个容器可申请的最小与最大内存,应用在运行申请内存时不能超过最大值,小于最小值则分配最小值,从这个角度看,最小值有点想操作系统中的页。最小值还有另外一种用途,计算一个节点的最大container数目注:这两个值一经设定不能动态改变(此处所说的动态改变是指应用运行时)。

1.2 NM设置

NM的内存资源配置,主要是通过下面两个参数进行的(这两个值是Yarn平台特性,应在yarn-sit.xml中配置) :
yarn.nodemanager.resource.memory-mb
yarn.nodemanager.vmem-pmem-ratio
说明:每个节点可用的最大内存,RM中的两个值不应该超过此值。此数值可以用于计算container最大数目,即:用此值除以RM中的最小容器内存。虚拟内存率,是占task所用内存的百分比,默认值为2.1倍;注意:第一个参数是不可修改的,一旦设置,整个运行过程中不可动态修改,且该值的默认大小是8G,即使计算机内存不足8G也会按着8G内存来使用。

2、map-site.xml 设置

2.1 AM设置

AM内存配置相关参数,此处以MapReduce为例进行说明(这两个值是AM特性,应在mapred-site.xml中配置),如下:
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
说明:这两个参数指定用于MapReduce的两个任务(Map and Reduce task)的内存大小,其值应该在RM中的最大最小container之间。如果没有配置则通过如下简单公式获得:
max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
一般的reduce应该是map的2倍。注:这两个值可以在应用启动时通过参数改变;

2.2 AM JVM设置

AM中其它与内存相关的参数,还有JVM相关的参数,这些参数可以通过,如下选项配置:
mapreduce.map.java.opts
mapreduce.reduce.java.opts
说明:这两个参主要是为需要运行JVM程序(java、scala等)准备的,通过这两个设置可以向JVM中传递参数的,与内存有关的是,-Xmx,-Xms等选项。此数值大小,应该在AM中的map.mb和reduce.mb之间。

3、所有参数

YARN相关:
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.vmem-pmem-ratio
yarn.nodemanager.resource.memory.mb
Map相关参数
mapreduce.map.java.opts
mapreduce.map.memory.mb
Reduce相关参数
mapreduce.reduce.java.opts
mapreduce.reduce.memory.mb
注意:
在hadoop2及以上版本中,map和reduce task 是运行在container中的。mapreduce.{map|reduce}.memory.mb被yarn用来设置container的内存大小。如果container的内存超限,会被yarn杀死。在container中,为了执行map和reduce task,yarn会在contaner中启动一个jvm来执行task任务。mapreduce.{map|reduce}.java.opts用来设置container启动的jvm参数,通过设置Xmx来设置map 或者reduce task的最大堆内存。理论上,{map|reduce}.java.opts设置的最大堆内存要比{map|reduce}.memory.mb小。例如:
hadoop jar <jarName> -Dmapreduce.reduce.memory.mb=4096 -Dmapreduce.map.java.opts=-Xmx3276

4、举例说明

如下图:
默认情况下,yarn.nodemanager.vmem-pmem-ratio被设置为2.1,这意味着,每个map或者task任务只能使用2.1倍("mapreduce.reduce.memory.mb") or ("mapreduce.map.memory.mb") 大小的虚拟内存,否则,会被nm杀掉。
例如下面的的报错信息:
Current usage: 2.1gb of 2.0gb physical memory used; 1.6gb of 3.15gb virtual memory used. Killing container.

map container的内存("mapreduce.map.memory.mb")被设置为1536mb 。am为其申请了2048m的内存,因为am的最小分配(yarn.scheduler.minimum-allocation-mb)是1024.如果map task对内存超过了2048m,nm会kill掉该task。reduce类似。When a mapreduce job completes you will see several counters dumped at the end of the job.The three

memory counters below show how much physical memory was allocated vs virtual memory. 

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wisgood/article/details/44001209
个人分类: Yarn
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭