关键字:Spark算子、Spark函数、Spark RDD行动Action、Spark RDD存储操作、saveAsHadoopFile、saveAsHadoopDataset
saveAsHadoopFile
def saveAsHadoopFile(path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], codec: Class[_ <: CompressionCodec]): Unit
def saveAsHadoopFile(path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], conf: JobConf = …, codec: Option[Class[_ <: CompressionCodec]] = None): Unit
saveAsHadoopFile是将RDD存储在HDFS上的文件中,支持老版本Hadoop API。
可以指定outputKeyClass、outputValueClass以及压缩格式。
每个分区输出一个文件。
- var rdd1 = sc.makeRDD(Array(("A",2),("A",1),("B",6),("B",3),("B",7)))
-
- import org.apache.hadoop.mapred.TextOutputFormat
- import org.apache.hadoop.io.Text
- import org.apache.hadoop.io.IntWritable
-
- rdd1.saveAsHadoopFile("/tmp/lxw1234.com/",classOf[Text],classOf[IntWritable],classOf[TextOutputFormat[Text,IntWritable]])
-
- rdd1.saveAsHadoopFile("/tmp/lxw1234.com/",classOf[Text],classOf[IntWritable],classOf[TextOutputFormat[Text,IntWritable]],
- classOf[com.hadoop.compression.lzo.LzopCodec])
-
saveAsHadoopDataset
def saveAsHadoopDataset(conf: JobConf): Unit
saveAsHadoopDataset用于将RDD保存到除了HDFS的其他存储中,比如HBase。
在JobConf中,通常需要关注或者设置五个参数:
文件的保存路径、key值的class类型、value值的class类型、RDD的输出格式(OutputFormat)、以及压缩相关的参数。
##使用saveAsHadoopDataset将RDD保存到HDFS中
- import org.apache.spark.SparkConf
- import org.apache.spark.SparkContext
- import SparkContext._
- import org.apache.hadoop.mapred.TextOutputFormat
- import org.apache.hadoop.io.Text
- import org.apache.hadoop.io.IntWritable
- import org.apache.hadoop.mapred.JobConf
-
-
-
- var rdd1 = sc.makeRDD(Array(("A",2),("A",1),("B",6),("B",3),("B",7)))
- var jobConf = new JobConf()
- jobConf.setOutputFormat(classOf[TextOutputFormat[Text,IntWritable]])
- jobConf.setOutputKeyClass(classOf[Text])
- jobConf.setOutputValueClass(classOf[IntWritable])
- jobConf.set("mapred.output.dir","/tmp/lxw1234/")
- rdd1.saveAsHadoopDataset(jobConf)
-
- 结果:
- hadoop fs -cat /tmp/lxw1234/part-00000
- A 2
- A 1
- hadoop fs -cat /tmp/lxw1234/part-00001
- B 6
- B 3
- B 7
-
##保存数据到HBASE
HBase建表:
create ‘lxw1234′,{NAME => ‘f1′,VERSIONS => 1},{NAME => ‘f2′,VERSIONS => 1},{NAME => ‘f3′,VERSIONS => 1}
- import org.apache.spark.SparkConf
- import org.apache.spark.SparkContext
- import SparkContext._
- import org.apache.hadoop.mapred.TextOutputFormat
- import org.apache.hadoop.io.Text
- import org.apache.hadoop.io.IntWritable
- import org.apache.hadoop.mapred.JobConf
- import org.apache.hadoop.hbase.HBaseConfiguration
- import org.apache.hadoop.hbase.mapred.TableOutputFormat
- import org.apache.hadoop.hbase.client.Put
- import org.apache.hadoop.hbase.util.Bytes
- import org.apache.hadoop.hbase.io.ImmutableBytesWritable
-
- var conf = HBaseConfiguration.create()
- var jobConf = new JobConf(conf)
- jobConf.set("hbase.zookeeper.quorum","zkNode1,zkNode2,zkNode3")
- jobConf.set("zookeeper.znode.parent","/hbase")
- jobConf.set(TableOutputFormat.OUTPUT_TABLE,"lxw1234")
- jobConf.setOutputFormat(classOf[TableOutputFormat])
-
- var rdd1 = sc.makeRDD(Array(("A",2),("B",6),("C",7)))
- rdd1.map(x =>
- {
- var put = new Put(Bytes.toBytes(x._1))
- put.add(Bytes.toBytes("f1"), Bytes.toBytes("c1"), Bytes.toBytes(x._2))
- (new ImmutableBytesWritable,put)
- }
- ).saveAsHadoopDataset(jobConf)
-
- ##结果:
- hbase(main):005:0> scan 'lxw1234'
- ROW COLUMN+CELL
- A column=f1:c1, timestamp=1436504941187, value=\x00\x00\x00\x02
- B column=f1:c1, timestamp=1436504941187, value=\x00\x00\x00\x06
- C column=f1:c1, timestamp=1436504941187, value=\x00\x00\x00\x07
- 3 row(s) in 0.0550 seconds
-
注意:保存到HBase,运行时候需要在SPARK_CLASSPATH中加入HBase相关的jar包。
可参考:http://lxw1234.com/archives/2015/07/332.htm
更多关于Spark算子的介绍,可参考 Spark算子系列文章 :
http://lxw1234.com/archives/2015/07/363.htm
转载请注明:lxw的大数据田地 » Spark算子:RDD行动Action操作(6)–saveAsHadoopFile、saveAsHadoopDataset