熵 熵的简单理解和实例

本文介绍了熵的基本概念,它是信息量的度量,值越大表示系统越混乱。熵的定义通过独立随机变量的联合概率得到,信息量用负对数表示。通过两个计算示例,展示了熵的计算过程,说明熵值较高的系统更显混乱,更难以预测。
摘要由CSDN通过智能技术生成

熵 熵的简单理解和实例

  • 熵是信息量,越大越混乱,越小越确定

1. 熵的由来

假设两个相互独立随机变量,x,y的概率分布分别为p(x),p(y)。那么联合概率分布:

P ( x , y ) = p ( x ) ⋅ p ( y ) P(x,y)=p(x)·p(y) P(x,y)=p(x)p(y)

熵表示信息量,随机变X``Y相互独立,取值(x,y)的信息量应该是加法,即

h ( x , y ) = h ( x ) + h ( y ) h(x,y)=h(x)+h(y) h(x,y)=h(x)+h(y)

所以我们很自然去想取log,这样统计学就和信息量建立了联系。

所以,定义信息量:

h ( x ) = − l n p ( x ) h(x)=-lnp(x) h(x)=lnp(x)

  • 底是e还是2都可以,不影响逻辑。通信领域常用2,机器学习中常用e.
  • 应为P(x)<=1 所以去负号让h(x)>=0,熵毕竟表示信息量,非负数更符合逻辑

2 熵的定义和实例

上面只考虑随机变量取一个值情况,如果取值有n种情况,熵定义为:

H ( p ) = E p [ − l n P ( x ) ] = − ∑ i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊老羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值