在一个 3×3 的网格中,1∼8这 8 个数字和一个 x
恰好不重不漏地分布在这 3×3 的网格中。
例如:
1 2 3
x 4 6
7 5 8
在游戏过程中,可以把 x
与其上、下、左、右四个方向之一的数字交换(如果存在)。
我们的目的是通过交换,使得网格变为如下排列(称为正确排列):
1 2 3
4 5 6
7 8 x
例如,示例中图形就可以通过让 x
先后与右、下、右三个方向的数字交换成功得到正确排列。
交换过程如下:
1 2 3 1 2 3 1 2 3 1 2 3
x 4 6 4 x 6 4 5 6 4 5 6
7 5 8 7 5 8 7 x 8 7 8 x
现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。
输入格式
输入占一行,将 3×3 的初始网格描绘出来。
例如,如果初始网格如下所示:
1 2 3
x 4 6
7 5 8
则输入为:1 2 3 x 4 6 7 5 8
输出格式
输出占一行,包含一个整数,表示最少交换次数。
如果不存在解决方案,则输出 −1。
输入样例:
2 3 4 1 5 x 7 6 8
输出样例
19
求最小的步数,用BFS搜到的一定是最小的。因为bfs是一层一层的搜索的。
此题难点在于状态的表示以及如何把状态储存到队列里,如何记录每个状态到原点的距离。
用string来存储每个3x3的小矩阵,将二维的转为一维的来处理。
另外涉及到一些用法:
1. string里的find函数:返回值是字母在母串中的位置(下标记录),如果没有找到,那么会返回一个特别的标记npos。(返回值可以看成是一个int型的数)
2.map<type1,type2>自动按照type1从小到大排序,unodered_map是不会自动排序的map
3.swap(a,b)也就是把a和b的值互换。
4.map和set两种容器的底层结构都是红黑树,所以容器中不会出现相同的元素,因此count()的结果只能为0和1,可以以此来判断键值元素是否存在(当然也可以使用find()方法判断键值是否存在)。
#include<bits/stdc++.h>
using namespace std;
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};
int bfs(string s)
{
queue<string>q;
q.push(s);
unordered_map<string,int>mp;
mp[s]=0;
string end="12345678x";
while(q.size())
{
string t=q.front();
q.pop();
if(t==end)
{
return mp[t];
}
int dis=mp[t];
int k=t.find('x');
int x=k/3,y=k%3;
for(int i=0;i<4;i++)
{
int nx=x+dx[i];
int ny=y+dy[i];
if(nx>=0&&nx<3&&ny>=0&&ny<3)
{
swap(t[k],t[nx*3+ny]);
if(mp.count(t)==0)
{
mp[t]=dis+1;
q.push(t);
}
swap(t[k],t[nx*3+ny]);
}
}
}
return -1;
}
int main()
{
char c;
string s;
for(int i=0;i<9;i++)
{
cin>>c;
s+=c;
}
cout<<bfs(s)<<endl;
return 0;
}