pytorch detach解析

pytorch detach 与 detach_

pytorch 的 Variable 对象中有两个方法,detach和 detach_ 本文主要介绍这两个方法的效果和 能用这两个方法干什么。

detach

官方文档中,对这个方法是这么介绍的。

  • 返回一个新的 从当前图中分离的 Variable。
  • 返回的 Variable 永远不会需要梯度
  • 如果 被 detach 的Variable volatile=True, 那么 detach 出来的 volatile 也为 True
  • 还有一个注意事项,即:返回的 Variable 和 被 detach 的Variable 指向同一个 tensor
import torch
from torch.nn import init
from torch.autograd import Variable
t1 = torch.FloatTensor([1., 2.])
v1 = Variable(t1)
t2 = torch.FloatTensor([2., 3.])
v2 = Variable(t2)
v3 = v1 + v2
v3_detached = v3.detach()
v3_detached.data.add_(t1) # 修改了 v3_detached Variable中 tensor 的值
print(v3, v3_detached)    # v3 中tensor 的值也会改变
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
# detach 的源码
def detach(self):
    result = NoGrad()(self)  # this is needed, because it merges version counters
    result._grad_fn = None
    return result
  • 1
  • 2
  • 3
  • 4
  • 5

detach_

官网给的解释是:将 Variable 从创建它的 graph 中分离,把它作为叶子节点。

从源码中也可以看出这一点

  • 将 Variable 的grad_fn 设置为 None,这样,BP 的时候,到这个 Variable 就找不到 它的 grad_fn,所以就不会再往后BP了。
  • 将 requires_grad 设置为 False。这个感觉大可不必,但是既然源码中这么写了,如果有需要梯度的话可以再手动 将 requires_grad 设置为 true
# detach_ 的源码
def detach_(self):
    """Detaches the Variable from the graph that created it, making it a
    leaf.
    """
    self._grad_fn = None
    self.requires_grad = False
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

能用来干啥

如果我们有两个网络 A,BA,B, 两个关系是这样的 y=A(x),z=B(y)y=A(x),z=B(y) 现在我们想用 z.backward()z.backward()来为 BB 网络的参数来求梯度,但是又不想求 AA 网络参数的梯度。我们可以这样:

# y=A(x), z=B(y) 求B中参数的梯度,不求A中参数的梯度
# 第一种方法
y = A(x)
z = B(y.detach())
z.backward()

# 第二种方法
y = A(x)
y.detach_()
z = B(y)
z.backward()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这种情况下,detach 和 detach_ 都可以用。但是如果 你也想用 yy 来对 AA 进行 BP 呢?那就只能用第一种方法了。因为 第二种方法 已经将 AA 模型的输出 给 detach(分离)了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值