算法之KMP子字符串查找算法:原理、实现与应用
在算法的学习旅程中,我始终相信分享与交流能让我们收获更多。每次攻克一个新的算法难题,都像是打开了一扇通往新世界的大门,里面充满了奇妙的知识和技巧。今天,我就迫不及待地想和大家分享我在学习子字符串查找算法时的重要收获——Knuth - Morris - Pratt(KMP)算法,希望我们能一起进步,在算法的海洋里探索得更深更远。
一、写作初衷
算法的世界既广阔又深邃,子字符串查找算法作为其中的一个重要领域,有着丰富的知识和技巧等待我们去挖掘。在学习过程中,我发现KMP算法非常有趣且实用,但理解起来也有一定难度。我深知独自摸索的艰辛,所以希望通过这篇博客,把我对KMP算法的理解和学习经验分享给大家。我们可以一起探讨其中的原理、实现细节,共同攻克学习过程中的难题,在算法学习的道路上携手前行。
二、子字符串查找算法背景
子字符串查找,简单来说,就是在一段长文本中找到与给定模式字符串相匹配的子字符串。比如在一篇文章里查找某个特定的单词,或者在一段代码中查找特定的代码片段,都涉及到子字符串查找操作。这在文本处理、数据挖掘、信息检索等众多领域都有着广泛的应用。在学习KMP算法之前,我们先来了解一下传统的暴力子字符串查找算法。
暴力算法是最直接的方法,它在文本中模式可能出现的每一个位置,逐个字符地进行比较。用两个指针,一个遍历文本,一个遍历模式。如果遇到不匹配的字符,就将模式指针回溯到开头,文本指针移动到下一个可能的起始位置重新开始比较 。虽然暴力算法简单易懂,但在最坏情况下,它的时间复杂度高达O(NM),其中N是文本长度,M是模式长度。例如,当文本和模式都包含大量重复字符时,就会进行大量不必要的比较,效率很低。这就促使我们去寻找更高效的算法,KMP算法应运而生。
三、KMP子字符串查找算法详解
(一)核心思想
KMP算法的核心在于,当匹配过程中出现不匹配时,它能利用已经匹配的部分信息,避免将文本指针回退到所有已经匹配的字符之前,从而减少不必要的字符比较。这是通过对模式字符串进行预处理,构建一个数组(在代码中通常用dfa
表示,即确定有限状态自动机的状态转移表)来实现的。这个数组记录了在匹配失败时,模式指针应该回退到的位置。
(二)模式指针的回退原理
假设我们正在查找模式字符串pat
,在匹配过程中,当文本指针i
和模式指针j
指向的字符不匹配时,KMP算法会根据dfa
数组来确定j
的新值。对于每个字符c
,dfa[c][j]
表示在比较了c
和pat.charAt(j)
之后,应该和下一个文本字符比较的模式字符的位置。在匹配时,dfa[pat.charAt(j)][j]
总是j + 1
,因为匹配成功就继续比较下一个字符。而在不匹配时,由于我们已经知道了文本中前j - 1
个字符(它们和模式中的前j - 1
个字符相同),所以可以通过将模式字符串的副本覆盖在这j
个字符(前j - 1
个字符加上当前不匹配的字符c
)上,然后从左向右滑动这个副本,直到所有重叠的字符都相互匹配(或者没有相匹配的字符),此时重叠字符的数量就是dfa[c][j]
的值,也就是模式指针j
应该回退到的位置。
(三)KMP查找算法实现
下面是用Java实现KMP子字符串查找算法的代码示例:
public class KMP {