强化学习-An introduction之 多臂老虎机 (k-bandits)

Chapter 2 多臂老虎机

k臂老虎机问题(2.1节):

You are faced repeatedly with a choice among k different options, or actions. After each choice you receive a numerical reward chosen from a stationary probability distribution that depends on the action you selected. Your objective is to maximize the expected total reward over some time period.

解决办法(2.2、2.7、2.8、2.9节)

Action-value Methods(e-greedy)

假设我们大概知道每个action的奖励的分布,我们有两种办法,一个是每次选择奖励最多的action及greedy method,另一种是大部分选择奖励最多的小部分去探索别的action的分布即 ϵ ϵ method。

一种简单的衡量每个行动的奖励的方法是,对这个action的奖励算平均值,一般可以暴力算,如下:

一种增量实现的方式(2.4节)只用到上一时刻的平均奖励和这一时刻的奖励:

(2.3节)对greedy-method和两个 ϵ ϵ -method进行了实验对比,e更大的可以更快的找到最优策略,但长久下来e小的会占优势。bandit task were nonstationary,并且nonstationarity is the case most commonly encountered in reinforcement learning.

  • e-greedy:

前面说的是对某个action的衡量是通过求它的奖励的平均值,但是这是针对奖励的概率分布不变的问题,但是,非静态性在强化学习中很常见,所以针对这个问题,(2.5节)提出了reward的加权平均:

展开来就是

最后一步的系数和是1,所以是Q1和之后的奖励的加权平均。

这样的加权平均使越往后的奖励权重越大,且向前指数呈指数下降,但是这种加权平均不能保证对奖励的估计是收敛的,但是在最近的奖励附近变化。

(2.6节)讲的是初始化Q1的技巧——optimistic initial values(乐观初始值),如果我们将初始的Q1设置成奖励的期望值,那么对exploration会有帮助,但是这只在静态问题中有效果,在非静态问题没那么有效。在以后的章节中,这种技巧会被经常使用。

Upper-Con dence-Bound(UCB)

greedy method:没有考虑其他未探索的action可能会更优

e-greedy method:虽然加了一部分对未知行动的探索,但是没有倾向性,因为有的action最优的可能性更大。

针对以上问题,(2.7节)讲解了UCB方法,它同时考虑了奖励的期望值和不确定性,一方面我们想要期望值大的,一方面期望值虽然小一点但是它可能有更多的可能性(也就是潜力股)。即

Gradient Bandit Algorithms

前面的方法都是对action的奖励进行估计,然后根据估计来选择action。

(2.8节)we consider learning a numerical preference for each action a, which we denote Ht(a) H t ( a ) . The larger the preference, the more often that action is taken, but the preference has no interpretation in terms of reward.

根据preference Ht(a) H t ( a ) 用softmax来计算选择每个action的概率:

选择某个action At A t 并获得奖励 Rt R t 后,如下更新 Ht H t

这个方法我们可以把它理解成是随机梯度上升,核心思想是:

Contextual Bandits

以上的k-bandit问题都是在一种situation下,但是强化学习问题一般都不止一个situation,下面我们考虑多个状况的问题——contextual bandits问题。

考虑这样的问题:有个机器,它能产生不同的颜色,每种不同的颜色都对应一个k-bandits问题,所以在不同的颜色下选择的arm也不一样,这就是contextual bandits问题,它比前面讨论的k-bandits问题复杂了一点,因为加入了不同的颜色的situations,所以要学习一个policy,map(colos)->arm,但是比一般的强化学习问题简单点。

总结

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值