DP

博客探讨了两个信息技术相关的问题:二维费用背包问题和列车调度。在二维费用背包问题中,Kkksc03需要在有限的时间和金钱内满足尽可能多的愿望。问题转化为求解在给定限制下能实现的最大愿望数。而列车调度问题则要求按照特定顺序从火车站出口离开,需要确定最少的铁轨数量来完成调度。两个问题都涉及优化策略和资源分配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

T1

P1855 榨取kkksc03

洛谷的运营组决定,如果一名oier向他的教练推荐洛谷,并能够成功的使用(成功使用的定义是:该团队有20个或以上的成员,上传10道以上的私有题目,布置过一次作业并成功举办过一次公开比赛),那么他可以浪费掉kkksc03的一些时间的同时消耗掉kkksc03的一些金钱以满足自己的一个愿望。

Kkksc03的时间和金钱是有限的,所以他很难满足所有同学的愿望。所以他想知道在自己的能力范围内,最多可以完成多少同学的愿望?

输入输出格式

输入格式:

 

第一行,n M T,表示一共有n(n<=100)个愿望,kkksc03 的手上还剩M(M<=200)元,他的暑假有T(T<=200)分钟时间。

第2~n+1行 mi,ti 表示第i个愿望所需要的金钱和时间。

 

输出格式:

 

一行,一个数,表示kkksc03最多可以实现愿望的个数。

 

输入输出样例

输入样例#1: 复制

6 10 10
1 1
2 3 
3 2
2 5
5 2
4 3

输出样例#1: 复制

4

说明

提示 第1,2,3,6个

二维费用背包

#include<iostream>
#include<algorithm>
using namespace std;
int a[105];
int b[105];
int f[230][230];
int main()
{
    int n,m,t;
    cin >> n >> m >> t;
    for(int i=1; i<=n; i++)
    {
        cin >> a[i] >> b[i];
    }
    for(int i=1; i<=n; i++)
    {
        for(int j=m; j>=a[i]; j--)
        {
            for(int k=t; k>=b[i]; k--)
            {
                f[j][k]=max(f[j][k],f[j-a[i]][k-b[i]]+1);
            }
        }
    }
    cout<<f[m][t]<<endl;
    return 0;
}

列车调度 (https://pintia.cn/problem-sets/1102904843624763392/problems/1102904878034833417

 

火车站的列车调度铁轨的结构如下图所示。

两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道。每趟列车从入口可以选择任意一条轨道进入,最后从出口离开。在图中有9趟列车,在入口处按照{8,4,2,5,3,9,1,6,7}的顺序排队等待进入。如果要求它们必须按序号递减的顺序从出口离开,则至少需要多少条平行铁轨用于调度?

输入格式:

输入第一行给出一个整数N (2 ≤ N ≤10​5​​),下一行给出从1到N的整数序号的一个重排列。数字间以空格分隔。

输出格式:

在一行中输出可以将输入的列车按序号递减的顺序调离所需要的最少的铁轨条数。

输入样例:

9
8 4 2 5 3 9 1 6 7

输出样例:

4

 

#include <iostream>
#include<algorithm>
using namespace std;
int a[10005];
int f[10005];
int main()
{
    int n;
    cin >> n;
    for(int i=1;i<=n;i++)
    {
        cin >>a[i];
    }
    f[1]=a[1];
    int num=1;
    for(int i=2;i<=n;i++)
    {
        if(a[i]>f[num])
        {
            f[++num]=a[i];
        }
        else
        {
            int ans=lower_bound(f,f+1+num,a[i])-f;
            f[ans]=a[i];
        }
    }
    cout<<num<<endl;
    return 0;
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值