四平方和定理_简化循环

版权声明:看我干嘛? 你又没打算转载我的博客~ https://blog.csdn.net/wjh2622075127/article/details/79913776

.

四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多四个正整数的平方和。如果把 00 包括进去,就正好可以表示为四个数的平方和。

比如:

\displaystyle 5 = 0^2 + 0^2 + 1^2 + 2^25=0 2 +0 2 +1 2 +2 2

\displaystyle 7 = 1^2 + 1^2 + 1^2 + 2^27=1 2 +1 2 +1 2 +2 2

则对于一个给定的正整数 nn,可以表示为:n = a^2 + b^2 + c^2 + d^2n=a 2 +b 2 +c 2 +d
2 。

你需要求出 字典序 最小的一组解 a,b,c,da,b,c,d。

字典序大小:从左到右依次比较,如果相同则比较下一项,直到有一项不同,较小的一方字典序更小,反之字典序更大,所有项均相同则二者字典序相同。

输入格式 程序输入为一个正整数 N(1 \leq N \leq 5000000)N(1≤N≤5000000)。

输出格式 输出四个非负整数 a,b,c,da,b,c,d,中间用空格分开。

样例输入1 5 样例输出1 0 0 1 2 样例输入2 12 样例输出2 0 2 2 2

用四重循环就可以简单解决, 但是其实可以用三重循环, 因为第四个数据可以用前三个数据算出来, 这也是这道题的价值所在, 在做其他题目是, 可以用这种思想简化时间复杂度。

效果是很客观的, 就这道题来说, 实际时间差了50倍。

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
    int n;
    cin >> n;
    for(int i = 0; i*i < n; ++i) {
        for(int j = i; j*j + i*i < n; ++j) {
            for(int k = j; k*k + j*j + i*i < n; ++k) {
                if(int(pow(int(pow(n-i*i-j*j-k*k, 0.5)), 2)) == (n-i*i-j*j-k*k)) {
                    cout << i << ' ' << j << ' ' << k << ' ' << pow(n-i*i-j*j-k*k, 0.5);
                    return 0;
                }
            }
        }
    }
}

四重循环代码:

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
    int n;
    cin >> n;
    for(int i = 0; i*i < n; ++i) {
        int ii = i*i;
        for(int j = i; ii + j*j < n; ++j) {
            int jj = ii+j*j;
            for(int k = j; k*k + jj < n; ++k) {
                int kk = jj + k*k;
                for(int l = k; l*l + kk <= n; ++l) {
                    if(l*l + kk == n) {
                        cout << i << ' ' << j << ' ' << k << ' ' << l;
                        return 0;
                    }
                }
            }
        }
    }
}
/*
5
0 0 1 2

12
0 2 2 2
*/
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页