题目描述
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多 4 个正整数的平方和。
如果把 0 包括进去,就正好可以表示为 4 个数的平方和。
比如:
5 = 02 + 02 + 12 + 22;
7 = 12 + 12 + 12 + 22;
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对 4 个数排序:
0≤a≤b≤c≤d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。
输入描述
程序输入为一个正整数N(N< 5 × 106)。
输出描述
要求输出4个非负整数,俺从小到大排序,中间用空格分开
输入输出样例
输入
12
输出
0 2 2 2
运行限制
- 最大运行时间:3s
- 最大运行内存:256
解题思路
-
如果采用暴力法,利用循环,循环下界为0,上界不加以思考,以该数本身为上界,8个测试用例,其中一个测试用例超时。
-
在方法1的基础上,修改上界,使其范围更小,一个数等于其余四个数的平方和,那么这四个数一定不会大于该数的平方,以此为上界进行尝试,结果如下。
解析:出现了一个段错误,思考后发现是因为循环上界定的不够精准,导致d变为了负数,如果在判断完全平方数函数中加以判断正负,结果得以改进。但仍然有一个测试用例超时。 -
在上一个方法的基础上,再次尝试精准化限制上界。由于0≤a≤b≤c≤d限制,加上只输出联合主键升序排列的第一个表示,所以a的最大值只能和b,c,d相等,为(n/4)**0.5,其余字母同理。测试用例均通过。
def sqrt(n):
return int(n ** 0.5)
def is_sqrt(n):
if n < 0:
return False
sqrt_n = int(sqrt(n))
if(sqrt_n ** 2 == n):
return True
else:
return False
def num(n,i):
return int((n/(5-i))**0.5)
def mathod(n):
sqrt_n = sqrt(n)
for a in range(num(n,1)):
for b in range(num(n,2)):
for c in range(num(n,3)):
d = n - a * a - b * b - c * c
if(is_sqrt(d)):
return a,b,c,sqrt(d)
if __name__ == '__main__':
n = int(input())
list_1 = mathod(n)
list_2 = map(abs,list_1)
print(*list_2)