四平方和(Python实现)

题目描述
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多 4 个正整数的平方和。
如果把 0 包括进去,就正好可以表示为 4 个数的平方和。
比如:
5 = 02 + 02 + 12 + 22
7 = 12 + 12 + 12 + 22
对于一个给定的正整数,可能存在多种平方和的表示法
要求你对 4 个数排序:
0≤a≤b≤c≤d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
输入描述
程序输入为一个正整数N(N< 5 × 106)。
输出描述
要求输出4个非负整数,俺从小到大排序,中间用空格分开
输入输出样例
输入
12
输出
0 2 2 2
运行限制

  • 最大运行时间:3s
  • 最大运行内存:256

解题思路

  1. 如果采用暴力法,利用循环,循环下界为0,上界不加以思考,以该数本身为上界,8个测试用例,其中一个测试用例超时。

  2. 在方法1的基础上,修改上界,使其范围更小,一个数等于其余四个数的平方和,那么这四个数一定不会大于该数的平方,以此为上界进行尝试,结果如下。
    在这里插入图片描述
    解析:出现了一个段错误,思考后发现是因为循环上界定的不够精准,导致d变为了负数,如果在判断完全平方数函数中加以判断正负,结果得以改进。但仍然有一个测试用例超时。

  3. 在上一个方法的基础上,再次尝试精准化限制上界。由于0≤a≤b≤c≤d限制,加上只输出联合主键升序排列的第一个表示,所以a的最大值只能和b,c,d相等,为(n/4)**0.5,其余字母同理。测试用例均通过。

def sqrt(n):
  return int(n ** 0.5)

def is_sqrt(n):
  if n < 0:
    return False
  sqrt_n = int(sqrt(n))
  if(sqrt_n ** 2 == n):
    return True
  else:
    return False
def num(n,i):
  return int((n/(5-i))**0.5)
def mathod(n):
  sqrt_n = sqrt(n)
  for a in range(num(n,1)):
    for b in range(num(n,2)):
      for c in range(num(n,3)):
        d = n - a * a - b * b - c * c
        if(is_sqrt(d)):
          return a,b,c,sqrt(d)

if __name__ == '__main__':
  n = int(input())
  list_1 = mathod(n)
  list_2 = map(abs,list_1)
  print(*list_2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值